

 Table of Contents

 	

 Introduction

 0

 	

 Overview

 1

 	

 Prerequisites

 1.1

 	

 References

 1.2

 	

 Setup

 1.3

 	

 Data

 1.4

 	

 GeoServer

 2

 	

 Basics

 2.1

 	

 Administration

 2.1.1

 	

 Login and frontend overview

 2.1.1.1

 	

 About & Status

 2.1.1.2

 	

 Server Status

 2.1.1.2.1

 	

 GeoServer Logs

 2.1.1.2.2

 	

 Contact Information

 2.1.1.2.3

 	

 About GeoServer

 2.1.1.2.4

 	

 Services

 2.1.1.3

 	

 Settings

 2.1.1.4

 	

 Security

 2.1.1.5

 	

 Publishing

 2.1.2

 	

 Prerequisites

 2.1.2.1

 	

 Workspaces

 2.1.2.2

 	

 Vector layers

 2.1.2.3

 	

 Import

 2.1.2.3.1

 	

 Store

 2.1.2.3.2

 	

 Layer

 2.1.2.3.3

 	

 Preview

 2.1.2.3.4

 	

 Style

 2.1.2.3.5

 	

 Raster layers

 2.1.2.4

 	

 Preparation

 2.1.2.4.1

 	

 Store

 2.1.2.4.2

 	

 Layer

 2.1.2.4.3

 	

 Preview

 2.1.2.4.4

 	

 Group layers

 2.1.2.5

 	

 Layer

 2.1.2.5.1

 	

 Preview

 2.1.2.5.2

 	

 Advanced

 2.2

 	

 REST

 2.2.1

 	

 Read

 2.2.1.1

 	

 Create

 2.2.1.2

 	

 Update

 2.2.1.3

 	

 Delete

 2.2.1.4

 	

 GeoWebCache

 2.2.2

 	

 Prerequisites

 2.2.2.1

 	

 Configure a new gridset

 2.2.2.2

 	

 Configure a cached layer

 2.2.2.3

 	

 Generate map tiles

 2.2.2.4

 	

 Check cache directory

 2.2.2.5

 	

 Check cache-headers

 2.2.2.6

 	

 JavaScript

 3

 	

 Basics

 3.1

 	

 Comments

 3.1.1

 	

 Variables

 3.1.2

 	

 Types

 3.1.3

 	

 Equality

 3.1.4

 	

 Numbers

 3.2

 	

 Creation

 3.2.1

 	

 Basic Operators

 3.2.2

 	

 Advanced Operators

 3.2.3

 	

 Strings

 3.3

 	

 Creation

 3.3.1

 	

 Concatenation

 3.3.2

 	

 Length

 3.3.3

 	

 Conditional Logic

 3.4

 	

 If

 3.4.1

 	

 Else

 3.4.2

 	

 Comparators

 3.4.3

 	

 Concatenate

 3.4.4

 	

 Arrays

 3.5

 	

 Indices

 3.5.1

 	

 Length

 3.5.2

 	

 Loops

 3.6

 	

 For

 3.6.1

 	

 While

 3.6.2

 	

 Do...While

 3.6.3

 	

 Functions

 3.7

 	

 Declare

 3.7.1

 	

 Higher order

 3.7.2

 	

 Objects

 3.8

 	

 Creation

 3.8.1

 	

 Properties

 3.8.2

 	

 Mutable

 3.8.3

 	

 Reference

 3.8.4

 	

 Prototype

 3.8.5

 	

 Delete

 3.8.6

 	

 Enumeration

 3.8.7

 	

 Global footprint

 3.8.8

 	

 OpenLayers

 4

 	

 Basics

 4.1

 	

 Creating a map

 4.1.1

 	

 Dissecting your map

 4.1.2

 	

 Resources

 4.1.3

 	

 Layers and Sources

 4.2

 	

 WMS sources

 4.2.1

 	

 Tiled sources

 4.2.2

 	

 Proprietary tile providers

 4.2.3

 	

 Vector data

 4.2.4

 	

 Image vector source

 4.2.5

 	

 Controls

 4.3

 	

 Scale line control

 4.3.1

 	

 Select interaction

 4.3.2

 	

 Draw interaction

 4.3.3

 	

 Modify interaction

 4.3.4

 	

 Vector Topics

 4.4

 	

 Formats

 4.4.1

 	

 Styling concepts

 4.4.2

 	

 Custom styles

 4.4.3

 	

 Custom Builds

 4.5

 	

 Concepts

 4.5.1

 	

 Create custom builds

 4.5.2

 	

 Ext JS

 5

 	

 Introduction

 5.1

 	

 Workshop Setup

 5.1.1

 	

 Basics

 5.2

 	

 Include Ext JS

 5.2.1

 	

 Hello Ext JS

 5.2.2

 	

 Viewport

 5.2.3

 	

 Layouts

 5.3

 	

 Column

 5.3.1

 	

 HBox

 5.3.2

 	

 VBox

 5.3.3

 	

 Accordion

 5.3.4

 	

 Table

 5.3.5

 	

 Border

 5.3.6

 	

 Components

 5.4

 	

 Panel

 5.4.1

 	

 Image

 5.4.2

 	

 Form

 5.4.3

 	

 Tree

 5.4.4

 	

 Grid

 5.4.5

 	

 Data

 5.5

 	

 Preparation

 5.5.1

 	

 Model

 5.5.2

 	

 Proxy and store

 5.5.3

 	

 Events

 5.6

 	

 Event click

 5.6.1

 	

 Event afterrender

 5.6.2

 	

 Event change

 5.6.3

 	

 GeoExt

 6

 	

 Metainformation

 6.1

 	

 About

 6.1.1

 	

 Target audience

 6.1.2

 	

 Goals

 6.1.3

 	

 Development environment

 6.1.4

 	

 Notes

 6.1.5

 	

 First steps

 6.2

 	

 Hello exercise

 6.2.1

 	

 Hello OpenLayers

 6.2.2

 	

 Hello ExtJS

 6.2.3

 	

 Hello GeoExt

 6.2.4

 	

 Useful resources

 6.2.5

 	

 Summary

 6.2.6

 	

 Map

 6.3

 	

 Basic example

 6.3.1

 	

 Dissecting the example

 6.3.2

 	

 Configuration variants

 6.3.3

 	

 Summary

 6.3.4

 	

 Layer tree

 6.4

 	

 Prepare layout

 6.4.1

 	

 Create a TreePanel

 6.4.2

 	

 Assign LayersTree store

 6.4.3

 	

 Summary

 6.4.4

 	

 Feature grid

 6.5

 	

 Prepare layout

 6.5.1

 	

 Create a feature grid

 6.5.2

 	

 Summary

 6.5.3

 	

 Popups, Overview map & other components

 6.6

 	

 Popup

 6.6.1

 	

 Overview map

 6.6.2

 	

 Other

 6.6.3

 	

 Synopsis

 7

 Introduction

 Welcome to the workshop

Introduction to core technologies behind the MoMo geoportal

Ulan Bator, Mongolia

A 5-day workshop from 2016-02-22 to 2016-02-26

Sources

	Workshop URL

	Download workshop (ZIP)

	Download workshop (PDF)

	Download workshop (EPUB)

	Git repository on github

Authors

	Marc Jansen (jansen@terrestris.de)

	Daniel Koch (koch@terrestris.de)

 Overview

 Overview

This workshop is intended to introduce certain key software packages behind the current and upcoming MoMo GeoPortal.

[image: The current version of the soon-to-be-updated MoMo Geoportal]The current version of the soon-to-be-updated MoMo Geoportal
In this overview section we'll learn about the following topics

	Prerequisites

	References

	Setup

	Data

 Prerequisites

 Prerequisites

Start the workshop

This workshop is intended to be executed in combination with an Linux image
delivered on an USB flash drive especially prepared for this workshop. To run
this image (and the workshop) please follow these steps:

 In case you didn't receive a bootable USB with the above system, you can grab an image under the following URL: http://files.terrestris.de/momo-master.tar.gz. This file is roughly 2.2 GB big, and once it is decompressed it will have a size of 16GB.

	Connect the provided USB flash drive to your computer and turn on the computer.

	Normally you should see the Linux Mint boot screen similar to the image below
 after only a few seconds.

[image: Linux Mint bootscreen.]Linux Mint bootscreen.
Note: If your computer isn't booting Linux Mint, please ensure your PC is
able and correctly configured to boot from an USB device. To do so, access your
BIOS by pressing DEL or F2 during the early boot process (usually you will
see the correct key displayed on-screen during the boot process). Press the
required key at the correct time and your computer's BIOS will appear. Once
you're in the BIOS, try to find a menu called something like Boot or similar.
Navigate to this menu and look for some sort of an entry called
Boot Option Priorities or similar. Usually you will find the boot order as a
priority list in which you can move the USB device boot option up to the top of
this list. Now save your changes and exit the BIOS to restart your computer.

Congratulations! Now you are ready to start the workshop! [image: :smiley:]

 References

 Workshop reference book

Here you will find some useful informations about the workshop image.

Credentials

	Linux:
	User: momo

	Password: momo

	GeoServer:
	User: admin

	Password: geoserver

	PostgreSQL:
	User: momo

	Password: momo

Useful paths

	Your home directory: /home/momo

	Workshop directory: /home/momo/materials

	Tomcat webapp directory: /opt/tomcat/webapps

Useful terminal commands

As you may not familiar with Linux you will find a small list containing the
most helpful terminal commands used in this workshop.

Navigation

	Navigate to a directory: $ cd {PATH_TO_DIRECTORY}

	Navigate to the upper directory: $ cd ..

	Navigate to your home directory: $ cd ~

	Navigate to the root directory: $ cd /

	List all files and directories of a folder (inlong list format): $ ls -l or $ ll

File and directory manipulation

	Creation
	Of a file: $ touch {FILE_PATH_AND_NAME}

	Of a directory: $ mkdir {DIRECTORY_PATH_AND_NAME}

	Removal
	Of a file: $ rm {FILE_PATH_AND_NAME}

	Of a directory: $ rm - rf {DIRECTORY_PATH_AND_NAME}

	Change ownership:
	For a single file $ chown {GROUP_NAME}:{USER_NAME} {FILE_PATH_AND_NAME}

	For a completer folder (recursively) $ chown -R {GROUP_NAME}:{USER_NAME} {FILE_PATH_AND_NAME}

Execution

	Make a file executable: $ chmod +x {FILE_PATH_AND_NAME}

	Run an executable file: $./myExecutable.sh

Compress and extract

	Create an archive: $ tar -cvzf {ARCHIVE_FILE_NAME}.tar.gz {DIRECTORY_TO_ARCHIVE}

	Extract an archive: $ tar -xvzf {ARCHIVE_FILE_NAME}.tar.gz

Services

	Start/Stop/Restart PostgreSQL: $ sudo service postgresql start|stop|restart

	Start/Stop/Restart Apache: $ sudo service apache2 start|stop|restart

	Start/Stop/Restart Tomcat: $ sudo start|stop|restart tomcat

Other useful commands

	Execute command with super user (root) permissions : $ sudo {COMMAND_TO_EXECUTE}

	Show manual of a tool: $ man {COMMAND_TOOL_NAME}

	Show terminal history: $ history

	Live-monitoring of a changing file (e.g. a logfile): $ tail -f {FILE_PATH_AND_NAME}

	Execute the last command used: $!!

Exercises

	Open the terminal by clicking the Terminal icon ([image:])
 in the bottom toolbar.

	Navigate to your home directory and create a folder named notes by typing:

 $ cd ~

 $ mkdir notes

	Go to the newly created folder and create a file named workshop-notes.md by typing:

$ cd notes/

$ touch workshop-notes.md

	Open this file with gedit and enter Linux is great! by typing:$ gedit workshop-notes.md

 Setup

 Workshop Linux Mint Setup

The provided workshop Linux image is just a Linux Mint with pre-installed and
configured programs and tools. This page lists the changes to the default system
configuration only and is no integral part of the workshop.

	Operating system:
	Linux Mint 17.3 Cinnamon Edition (32bit)

	Additionally installed software:
	Apache 2
	Installed from package manager

	Linked home directory /home/momo to http://localhost:80/momo

	Added to autostart

	Apache Tomcat 8
	Installed from here

	Added to autostart

	GeoServer 2.8.2
	Installed from here

	Installed plugins:
	pyramid-plugin

	wps-plugin

	oracle-plugin

	importer-plugin

	Published via Apache 2 on port 80
	http://localhost:80/geoserver

	Atom Editor
	Installed from here

	Chrome
	Installed from here

	PostgreSQL / PostGIS
	Installed from package manager

	Added to autostart

	git
	Installed from package manager

	nvm
	Installed from here

	bash-git-prompt
	Installed from here

	QGIS
	Installed from here

	GDAL
	Installed from package manager

	Removed packages: $ sudo apt-get remove thunderbird vlc vlc-plugin-notify vlc-plugin-pulse \
 vlc-data vlc-nox totem-common brasero banshee gimp hexchat pidgin totem \
 seahorse cowsay mint-backgrounds-qiana mint-backgrounds-rafaela \
 mint-backgrounds-rebecca mint-backgrounds-rosa sox ttf-indic-fonts-core \
 ttf-punjabi-fonts ttf-wqy-microhei fonts-kacst fonts-kacst-one \
 fonts-khmeros-core fonts-lao fonts-lklug-sinhala fonts-thai-tlwg \
 fonts-tibetan-machine fonts-tlwg-garuda fonts-tlwg-kinnari fonts-tlwg-loma \
 fonts-tlwg-norasi fonts-tlwg-purisa fonts-tlwg-sawasdee fonts-wqy-microhe \
 fonts-noto fonts-sil-abyssinica fonts-sil-padauk fonts-takao-pgothic \
 fonts-tlwg-umpush fonts-tlwg-waree gimp-help-en firefox firefox-locale-en \
 simple-scan transmission-common transmission-gtk mintwelcome

	Removed remaining dependencies no longer needed $ sudo apt-get autoremove

	Updated and upgraded packges to latest version $ sudo apt-get -y update && sudo apt-get -y upgrade

	In case you didn't receive a bootable USB with the above system, you can grab an image under the following URL: http://files.terrestris.de/momo-master.tar.gz This file is roughly 2.2 GB big, and once it is decompressed it will have a size of 16GB.

	Data used in the workshop:
	Natural Earth Large scale data, 1:10m
	Cultural
	Download here

	Physical
	Download here

	Raster (Ocean bottom)
	Download here

	Extracted to ~/materials/natural_earth

	OSM sample export Mongolia
	Download here

	Extracted to ~/materials/osm_mongolia

 Data

 Workshop data

This section shows the data and the data sources we'll us in the workshop.

Natural Earth (~/materials/natural_earth)

The Natural Earth dataset is a
free collection of vector and raster data published by the North American
Cartographic Information Society to encourage mapping. In this workshop we will
use the datasets Cultural, Physical and Raster in large scale (1:10m).

OpenStreetMap (~/materials/osm_mongolia)

OpenStreetMap is a free editable map database
of the world. In this workshop we use a small excerpt of the huge OSM
database focused on mongolia which is provided by the company geofabrik as a
collection of single shapefiles.

 GeoServer

 GeoServer

[image:]

GeoServer is an Open Source software server written in Java that allows users
to share and edit geospatial data. Designed for interoperability, it publishes
data from any major spatial data source using open standards.
GeoServer is the reference implementation of the Open Geospatial Consortium (OGC)
Web Feature Service (WFS) and Web Coverage Service (WCS) standards, as well as
a high performance certified compliant Web Map Service (WMS). GeoServer forms
a core component of the Geospatial Web.

In this module we will focus on the geodata-management using the GeoServer
administration frontend. Thus we will learn both how to set the most common
configure options and how to load, publish, style, and share geospatial data
with GeoServer.

The workshop is subdivided into two main categories:

	GeoServer Basics (Administration & Publishing)

	GeoServer Advanced (REST & GeoWebCache)

 Parts of this workshop are heavily inspired by workshops prepared
by the GeoServer community
and boundless.
Feel free to look at these sources for further informations.

 Basics

 GeoServer Basics

In this section we'll learn how to deal with the most common use cases when
working with the GeoServer: Manage the running GeoServer instance by adjusting
the most important configuration settings and publishing geospatial data.

	Administration settings

	Publishing geospatial data

 Administration

 Administration

This module will give you a brief introduction into the GeoServer administration
frontend where we'll focus on the mainly used configuration settings. The basis
structure of the following chapters is directly inspired by GeoServers frontend
composition (Note: The Data and Tile Caching sections will be treated in the
particular chapters Publishing and
GeoWebCache).

	Login and frontend overview

	About & Status

	Services

	Settings

	Security

 Login and frontend overview

 Login and frontend overview

GeoServer includes a web-based administration interface. Most GeoServer
configuration can be done through this interface, without the need to edit
configuration files by hand or use an API. This section will give a brief
overview to the web interface. Subsequent sections will use the web interface in
greater detail.

Welcome page

To open the GeoServer UI open the following address in your browser:

http://localhost/geoserver

The initial page is called the Welcome page. To return to the Welcome page
from anywhere, just click the GeoServer logo in the top left corner of the page.

[image: GeoServer welcome page]GeoServer welcome page
While the unauthenticated/anonymous Welcome page is not void of features, it
really just lets you see things (configured on geoserver) but not touch
them (and make configuration changes).

For security reasons, most GeoServer configuration tasks require you to be
logged in first. By default, the GeoServer administration credentials are
admin and geoserver, although this can and should be changed (see chapter
Security).

Login

Log in into GeoServer by using the default administration credentials from above.

[image: GeoServer welcome page]GeoServer welcome page
After the login, many more options will be displayed.

Basic layout

Use the links on the left side column to manage GeoServer, its services, data,
security settings and more. Also on the main page are direct links to the
capabilities documents for each service (WFS, WMS, WCS). We'll be using the
links on the left under Data - among them Layer Preview, Workspaces, Stores,
Layers, Layer Groups, and Styles - very often in this workshop, so it is good
to familiarize yourself with their location. Thus we'll start this module in the
following chapters by introducing the frontend structure.

 About & Status

 About and Status

This section of the web administration interface provides a high level overview
of the running application. Contact information for OGC services is also managed
here.

	Server Status

	GeoServer Logs

	Contact Information

	About GeoServer

 Server Status

 Server Status

The Server Status page shows you many metainformation about the current GeoServer
configuration and overall status.

[image: Server status page.]Server status page.
It provides a useful diagnostic tool in a testing and production environment and
should be your first place to go if are facing any problem with your running
GeoServer instance.

 Certainly it's always useful to have a look at the Logs
 additionally.

Status indicators

The following table describes the current status indicators (as described
here).

	Option
	Description

	Data directory
	The absolute path to your data directory.

	Locks
	A WFS has the ability to lock features to prevent more than one person from updating the feature at one time. If data is locked, edits can be performed by a single WFS editor. When the edits are posted, the locks are released and features can be edited by other WFS editors. A zero in the locks field means all locks are released. If locks is non-zero, then pressing Free locks releases all feature locks currently held by the server, and updates the field value to zero.

	Connections
	Refers to the numbers of vector stores, in the above case 6, that were able to connect.

	Memory Usage
	The amount of memory currently used by GeoServer. Clicking on the Free Memory button, cleans up memory marked for deletion by running the garbage collector.

	JVM Version
	Denotes which version of the JVM (Java Virtual Machine) is been used to power the server.

	Available Fonts
	A list of all fonts GeoServer has access to. These can be referenced in the layer style.

	Native JAI
	GeoServer uses Java Advanced Imaging (JAI) framework for image rendering and coverage manipulation. When properly installed (true), JAI makes WCS and WMS performance faster and more efficient.

	Native JAI ImageIO
	GeoServer uses JAI Image IO (JAI) framework for raster data loading and image encoding. When properly installed (true), JAI Image I/O makes WCS and WMS performance faster and more efficient.

	JAI Maximum Memory
	Expresses in bytes the amount of memory available for tile cache.

	JAI Memory Usage
	Run-time amount of memory is used for the tile cache. Clicking on the Free Memory button, clears available JAI memory by running the tile cache flushing.

	JAI Memory Threshold
	Refers to the percentage, e.g. 75, of cache memory to retain during tile removal. JAI Memory Threshold value must be between 0.0 and 100.

	Number of JAI Tile Threads
	The number of parallel threads used by to scheduler to handle tiles.

	JAI Tile Thread Priority
	Schedules the global tile scheduler priority. The priority value is defaults to 5, and must fall between 1 and 10.

	ThreadPoolExecutor Core Pool Size
	The imageMosaic reader may load, in parallel, different files that make up the mosaic by means of a ThreadPoolExecutor. A global ThreadPoolExecutor instance is shared by all the readers supporting and using concurrent reads. Here the current core pool size of the ThreadPoolExecutor is listed.

	ThreadPoolExecutor Max Pool Size
	Here the current maximum core pool size of the ThreadPoolExecutor is listed.

	ThreadPoolExecutor Keep Alive Time (ms)
	The time to be waited by the ThreadPoolExecutor before terminating an idle thread in case there are more threads than available in the core pool size.

	Update Sequence
	Refers to the number of times the server configuration has been modified.

	Resource Cache
	GeoServer does not cache data, but it does cache connection to stores, feature type definitions, external graphics, font definitions and CRS definitions as well. The Clear button forces those caches to empty and makes GeoServer reopen the stores and re-read image and font information, as well as the custom CRS definitions stored in ${GEOSERVER_DATA_DIR}/user_projections/epsg.properties.

	Configuration and catalog
	GeoServer keeps in memory all of its configuration data. If for any reason that configuration information has become stale (e.g. an external utility has modified the configuration on disk) the Reload button will force GeoServer to reload all of its configuration from disk.

Exercise

	Open up the Server Status page on your GeoServer and press the button
 Free memory besides Memory Usage. What do you observe?

 GeoServer Logs

 GeoServer Logs

GeoServer displays the contents of the application logs directly through the web
interface. Reading the logs can be very helpful when troubleshooting. To view
the logs, click on GeoServer Logs on the left under About & Status.

[image: Logging page.]Logging page.
Exercise

	Open up the GeoServer Logs section and investigate the last entries in
 your logfile. Can you find any conspicuous or interesting entry?

 Contact Information

 Contact Information

Each OGC web service served by the GeoServer contains the contact details
associated with the server as part of their capabilities document. You can read
and manipulate these information in the section Contact Information under
About & Status.

[image: Contact page.]Contact page.
Exercise

	Fill in your contact informations in Contact Information page.

	Click Submit.

	Open the following link to request the GetCapabilites document provided by
 your GeoServer instance and verify your changes:

 http://localhost/geoserver/ows?SERVICE=WMS&REQUEST=GetCapabilities&VERSION=1.1.0

 You can also request the above GetCapabilities document by visiting
 the Welcome Page and select the links on the right
 handed side.

 About GeoServer

 About GeoServer

The about page lists general informations about the GeoServer you're running.
These listings are espacially helpful, if you want to contact any support or
if you want to know the installed GeoServer version for getting compatible
community modules and extensions.

Note: You'll see a link Documentation at the end of the page. This link will
guide you to the official documentation of the project and is a very helpful
address if you need any information about GeoServer.

[image: About page.]About page.
Exercise

	Follow the mentioned Documentation link and have a quick look around to
 see the valuable resources available here!

 Services

 Services

The Services section is for configuring the services published by GeoServer,
where we can manage:

	The metadata, resource limits, and SRS availability for WCS.

	The metadata, feature publishing, service level options, and data-specific
 output for WFS.

	The metadata, resource limits, SRS availability, and other data-specific
 output for WMS.

The following exercises will give you a brief introduction in the most important
administration options available here.

For further instructions please have a look at the official GeoServer
documentation.

Limit SRS output list

The default GetCapabilities document contains a comprehensive list of all available
spatial reference systems (SRS) of your GeoServer WMS server instance. Generally
it is not needed, that you list all supported systems as you typically want to
publish data in an limited list of projections only. Furthermore limiting this
list will reduce the file size of the responding GetCapabilites document!

Exercise

	Open the following URL in your browser to open the GetCapabilites document of
 your GeoServer instance:
 GetCapabilities

	In the resulting XML document find the element Layer which contains the
 large list (~6000 lines) of all supported EPSG projections.

In the next step we'll limit this list to contain the systems EPSG:4326,
EPSG:3857 and EPSG:900913 only.

	Navigate to Services ❭ WMS.

	Find the description field entitled with Limited SRS list and fill in
 4326, 3857, 900913.

[image:]

	Click Submit.

	Reopen the GetCapabilites document
 and you will note, that the document is reduced by a huge amount of lines.

Disable WFS-T

GeoServer is configured to act as a fully transactional Web Feature Service server
per default. A transactional WFS allows creation, deletion, and updating of
features. This implies, that each published feature type can be edited by any
client. Generally you don't want to allow clients to edit your data published
with GeoServer (unless you really want to allow it), especially if your
GeoServer is accessible globally through the Internet. In the next iteration
we're going to disable the WFS-T functionality.

Exercise

	Navigate to Services ❭ WFS.

	Find the checkbox group entitled with Service Level and select the level
 Basic to disable WFS-T compatibility.

[image:]

	Click Submit.

	Optional: Import a given WMS layer into QGIS and try to edit it.

 Settings

 Settings

The Settings section involves configuration settings that apply to the entire
server. Again, instead of explaining each checkbox, we'll focus on the most
important administration tools available in this section and its subsections.

For further instructions please have a look at the official GeoServer
documentation.

Set handle data and configuration problems

This setting determines how GeoServer will respond when a layer becomes
inaccessible for some reason. By default, when a layer has an error (for example,
when the default style for the layer is deleted), a service exception is printed
as part of the capabilities document, making the document invalid. For clients
that rely on a valid capabilities document, this can effectively make a
GeoServer appear to be "offline". As administrator you may prefer to configure
GeoServer to simply omit the problem layer from the capabilities document, thus
retaining the document integrity and allowing clients to connect to other
published layers.

Exercise

	Go to Settings ❭ Global.

	Select Skipping misconfigured layers in the combo entitled with Handle
 data and configuration problems in capabilities documents by....

[image:]

	Click Submit.

Reduce the number of decimals

To reduce the output size returned in a GetFeature response (and therefore
optimizing the bandwith) we can restrict the number of decimal places in a
GetFeature response. Here we will set the value to 2.

Exercise

	Go to Settings ❭ Global.

	Set Number of Decimals to 2.

[image:]

	Click Submit.

Change logging level

At some point in your production (or development) usage of GeoServer you'll
encounter a problem where you'll need to get further and detailed informations
to find the cause of the problem. In this case you can increase the level of
logging. The following steps will guide you how to set the logging level to
a verbose-like level containing valuable informations about the image processing
process.

Exercise

	Go to Settings ❭ Global.

	Select the check box beside Verbose Exception Reporting to return service
 exceptions with full Java stack traces.

	Find the description field entitled with Logging Profile and select the
 profile VERBOSE_LOGGING.properties to enable the DEBUG level logging on
 GeoTools and GeoServer.

[image:]

	Click Submit.

	To validate the changes please open the OpenLayers layer preview for a layer
 of your choice (Data ❭ Layer Preview) and zoom slightly into the
 map.

	Go to About & Status ❭ GeoServer Logs to open up the logfile and
 scroll down to the end of the file. Have a look at the timestamp and you'll
 notice plenty of logs for just a simple GetMap request (you did in the layer
 preview).

[image:]

	As the given settings are not really needed for the moment (we aren't facing
 any problems) we can reset the logging level to DEFAULT_LOGGING.properties.

 Security

 Security

GeoServer has a robust security subsystem, modeled on Spring Security. Most of
the security features are available through the Web administration interface.
A detailed explanation of all security options is far beyond the goals of this
workshop and the default settings are almost good enough for the basic usage of
GeoServer as well. Here we'll focus on the most important fact after installing
a GeoServer: Changing the default admin user and master password. (You may have
recognized the appropriate warnings on the GeoServer welcome page.)

For further instructions please have a look at the official GeoServer
documentation.

Change master password

The master password serves two purposes:

	Protect access to the keystore.

	Protect access to the GeoServer Root account (The root account is always
 active, regardless of the state of the security configuration. Much like its
 UNIX-style counterpart, this account provides "super user" status, and is
 meant to provide an alternative access method for fixing configuration issues.
 The user name for the root account is root. Its name cannot be changed.).

Exercise

To change the master password follow these steps:

	Go to Security ❭ Passwords.

	Select Change password.

	In the upcoming form use the following values to change the password to
 momo-ws:
	Current password: geoserver

	New password/Confirmation: momo-ws (Please use a more secure password
 in a real world GeoServer usage!)

	Click Change Password.

Change admin user password

Exercise

To change the password for the user admin please follow these steps:

	Go to Security ❭ Users, Groups, Roles.

	Open panel Users/Groups where you'll see a list of all current users of your
 GeoServer instance. At the moment (and in most future applications) you'll
 find the user admin only.

	Select the user admin by clicking on its username.

	In the upcoming form use the following values to change the password to
 momo-ws:
	Password/Confirm Password: momo-ws (Please use a more secure password
 in a real world GeoServer usage!)

[image:]

	Click Save.

 Publishing

 Publishing

In this section we'll learn the core principals about the GeoServer data
management and how to prepare and import (vector-/raster) data into GeoServer
and how to publish it as vector, raster and group layer.

	Publish vector layer

	Publish raster layer

	Publish group layer

 Prerequisites

 Prerequisites

Before we can start importing and reading data in this modules, we have to create
a new database on the (already installed) PostgreSQL database server as data
source for new layers. Thus we will use the administration tool pgAdmin III.
Let's start by opening it:

	Click Menu in the lower left corner and search for pgadmin

	In the resulting list select pgAdmin III ([image: pgadmin]) to
 open the tool.

Add a new server connection in pgAdmin

Once pgAdmin has started we can create a new connection to our PostgreSQL database
server:

	Create a new server connection by selecting File ❭ Add Server in
 the top menu bar and enter the following:
	Name: momo-workshop

	Host: localhost

	Port: 5432

	Username: momo

	Password: momo

	Store password: checked

[image:]

	Click OK

Creating a database

Now we can connect to this server by a double click on the newly created entry
in the left hand sided Object browser (or open the context menu for this entry
and select Connect as shown below).

[image:]

Within the next steps we will create a new database on this database server:

	Open the SQL-Query window by clicking the icon
 [image:] in the upper toolbar. Note:
 If the icon is greyed out, select the existing database postgres first.

	Copy the following SQL block into the SQL-Query window: CREATE DATABASE db_momo_ws
 WITH OWNER = momo
 ENCODING = 'UTF8'
 TABLESPACE = pg_default
 CONNECTION LIMIT = -1;

	Click Execute query ([image:]) in the upper
 toolbar to run the query.

	After successful execution go back to the Object browser, select the server
 and refresh the actual view (by pressing Refresh the selected object
 ([image:]) in the top toolbar) and ensure
 you have a new database entry named db_momo_ws present.

	Close the SQL-Query window.

Creating a schema

Once the database is created, we'll create a new schema in this database. This
schema will be used to store any geodata table we are going to import in this
workshop.

	Select the newly created database db_momo_ws in the Object browser and
 open the SQL window ([image:]). If you
 haven't closed the SQL-Query window before, please verify that you are
 connected to the correct database in the upper toolbar. Otherwise all
 subsequent SQL queries will be executed on the wrong database!

	Copy the following SQL block into the SQL-Query window to create a new schema
 named geodata: CREATE SCHEMA geodata
 AUTHORIZATION momo;

	Click Execute query ([image:]) to run the query.

	Refresh the Object browser and ensure the new schema is being created in
 the database db_momo_ws.

Enable spatial functionality

In the final step we will add support for geographic objects by enabling the
spatial database extension PostGIS for our database db_momo_ws.

	Open the SQL window (if not already opened) and paste in the following SQL
 block to spatially enable the database db_momo_ws: CREATE EXTENSION postgis;

	Click Execute query to run the query.

	Ensure the extension is being successfully installed by executing the
 following query: SELECT PostGIS_full_version();

 The corresponding output should look like: "POSTGIS="2.1.2 r12389" GEOS="3.4.2-CAPI-1.8.2 r3921" PROJ="Rel. 4.8.0, 6 March 2012" GDAL="GDAL 1.10.1, released 2013/08/26" LIBXML="2.9.1" LIBJSON="UNKNOWN" RASTER"

 Workspaces

 Workspace

A workspace (sometimes referred to as a namespace) is the name for a notional
container for grouping similar data together. It is designed to be a separate,
isolated space relating to a certain project. Using workspaces, it is possible
to use layers with identical names without conflicts.

Workspaces are usually denoted by a prefix to a layer name or store name. For
example, a layer called streets with a workspace prefix called nyc would be
referred to by nyc:streets. This would not conflict with another layer called
streets in another workspace called dc (dc:streets).

Stores and layers must all have an associated workspace. Styles may optionally
be associated with a workspace, but can also be global.

Technically, the name of a workspace is a URI, not the short prefix. A URI is a
Uniform Resource Identifier, which is similar to a URL, but does not need to
resolve to a web site. In the above example, the full workspace could have
been http://nyc in which case the full layer name would be http://nyc:streets.
GeoServer intelligently replaces the workspace prefix with the full workspace
URI, but it can be useful to know the difference.

Creating a new workspace

In this section we are going to create a new workspace called momo.

	Navigate to Data ❭ Workspaces.

	Click Add new workspace and enter the following:
	Name: momo

	Namespace URI: http://localhost:80/momo

	Default Workspace: checked

	Click Submit

[image: Add new workspace]Add new workspace
The workspace has been created and is now active. The green check mark indicates
that the workspace is the default one.

 Vector layers

 Vector layers

In this section we will learn how to import a shapefile to a spatially enabled
PostgreSQL database, set up a new vector store and publish a new vector layer
with GeoServer.

	Import shapefile to database

	Create a new PostgreSQL/PostGIS datastore

	Publish a new vector layer

	Preview the layer using GeoServer's layer preview

	Changing the layer style

 Import

 Import

Our workshop data (see here) is actually given as a
collection of single shapefiles. In order to enhance the performance while
read and write processes and enable writing at all (shapefiles can't be
manipulated via WFS-T after they have been published), we will import the
given data into our own PostgreSQL database entity we just created.

Import country polygons

	Open a new terminal window and navigate to the materials directory: $ cd ~/materials

	List all directories in the current folder with: $ ls -l

	You should be able to see the folders natural_earth and osm_mongolia. If
 you inspect them further on, you will see that each folder contains a wide list
 of single shapefiles, but for the moment we want to use a small portion of
 them to import into the database only. Therefore we are going to start with
 importing a shapefile involving worldwide country polygons.

	Navigate to directory materials/natural_earth/10m_cultural and check if you
 can find a file named ne_10m_admin_0_countries.shp.

	To import the shapefile we will use the command line tool shp2pgsql. The
 following command will transform the input shapefile ne_10m_admin_0_countries.shp
 with the input encoding LATIN1 and input projection 4326 to a SQL statement
 which will fill the data in a new table tbl_countries in schema geodata.
 After execution the output of shp2pgsql is directly piped to psql which
 will run the SQL output against the workshop database. You can easily copy
 the command below into the terminal window and execute it subsequently. $ shp2pgsql \
 -s 4326 \
 -W LATIN1 \
 -I ne_10m_admin_0_countries.shp \
 geodata.tbl_countries | \
 psql \
 -h localhost \
 -p 5432 \
 -U momo \
 -W \
 -d db_momo_ws

	After the successful execution of the above command (re-)open pgAdmin III,
 mark the database server momo-workshop in tree view and click
 Refresh the selected object to refresh the database/table list and expand
 the tree to Databases ❭ db_momo_ws ❭ Schemas ❭
 geodata ❭ Tables (if not already happened) as shown below:

[image:]

	Select table tbl_countries and click View the data in the selected object
 to open the data view for the imported table as shown below:

[image:]

	Congratulations! You've successfully imported a shapefile into PostgreSQL
 that can now easily be published through the GeoServer instance! [image: :thumbsup:]

 Store

 Store

A store is the name for a container of geographic data. A store refers to a
specific data source, be it a shapefile, database, or any other data source that
GeoServer supports.

A store can contain many layers, such as the case of a database that contains
many tables. A store can also have a single layer, such as in the case of a
shapefile or GeoTIFF. A store must contain at least one layer.

GeoServer saves the connection parameters to each store (the path to the
shapefile, credentials to connect to the database). Each store must also be
associated with one (and only one) workspace.

A store is sometimes referred to as a "datastore" in the context of vector
data, or "coveragestore" in the context of raster (coverage) data.

Creating a new store

Now we can add a new store to our new workspace momo. This store tells
GeoServer how to connect to the data source, in our case the PostgreSQL
database.

	Navigate to Data ❭ Stores.

	Click Add new Store.

	Click PostGIS - PostGIS Database

	Set the Workspace to momo if it isn't set already.

	Configure the new store as follows:
	Data Source Name: db_momo_ws

	Enabled: checked

	dbtype: postgis

	host: localhost

	port: 5432

	database: db_momo_ws

	schema: geodata

	user: momo

	passwd: momo

	Click Save

[image: Add new store]Add new store

 Layer

 Layer

A layer (sometimes known as a featuretype) is a collection of geospatial
features or a coverage. Typically a layer contains one type of data (points,
lines, polygons, raster) and has a single identifiable subject (streets, houses,
country boundaries, etc.). A layer corresponds to a table or view from a
database, or an individual file.

GeoServer stores information associated with a layer, such as projection
information, bounding box, and associated styles. Each layer must be associated
with one (and only one) workspace.

Publishing a layer

Once the new store is created, GeoServer automatically gives us the option of
publishing layers from this store. Here we chose the table tbl_countries by
clicking Publish.

[image: Publish a layer]Publish a layer
Minimal layer configuration

After publishing, GeoServer automatically gives us the option of configuring the
newly created layer. For the moment, we want to set up the layer with some basic
configuration only. Thus we ignore custom styling or caching that will be
handled later on.

	Configure the new layer as follows:
	Name: countries

	Enabled: checked

	Advertised: checked

	Title: Countries

	Abstract: Countries of the world.

	Native SRS: EPSG:4326

	Declared SRS: EPSG:4326

	SRS handling: Keep native

	Let GeoServer calculate the bounds of the data by clicking
 Compute from data.

	Convert the native bounds to the Lat/Lon Bounding Box by clicking
 Compute from native bounds.

	Click Save.

[image: Publish a new layer]Publish a new layer

 Preview

 Previewing a layer

You just published the layer with GeoServer! Now let's see how it looks by using
the Layer Preview.

	Navigate to Data ❭ Layer Preview

	Search for countries.

	Click OpenLayers.

[image: Layer Preview]Layer Preview
[image: Hello world!]Hello world!
As you published the layer countries GeoServer not only serves this layer as
WMS, in addition it automatically publishes the feature type via its WFS server.

	Return to the Layer Preview site and search for countries (see steps 1.
 and 2. ahead).

	Select a WFS format (e.g. the common format GeoJSON) in the dropdown
 menu All formats.

 [image: WFS Preview]

After selecting the entry you should see a new browser tab or window containing
the GeoJSON representation of the layer countries similar to following excerpt:

{
 "type": "FeatureCollection",
 "totalFeatures": 254,
 "features": [{
 "type": "Feature",
 "id": "countries.1",
 "geometry": {
 "type": "MultiPolygon",
 "coordinates": [
 [
 [
 [-69.99693762899994, 12.577582098000022],
 [-69.93639075399997, 12.531724351000037],
 [-69.92467200399997, 12.519232489000018],
 (...)
]
]
]
 },
 "geometry_name": "geom",
 "properties": {
 "scalerank": 3,
 "featurecla": "Admin-0 country",
 "labelrank": 5,
 "sovereignt": "Netherlands",
 (...)
 }
 },
 (...)
]
};

 Style

 Style

A style is a visualization directive for rendering geographic data. A style can
contain rules for color, shape, and size, along with logic for styling certain
features or points in certain ways based on attributes or scale level.

Every layer must be associated with at least one style. GeoServer recognizes
styles in Styled Layer Descriptor (SLD) format. The Styling section will go into
this topic in greater detail.

Create and assign a style to a layer

	Go to Data ❭ Styles ❭ Add a new style

	Create a new style as follows:
	Name: countries

	Workspace: momo

	Format: SLD

	Copy and paste the following SLD content into the style field: <?xml version="1.0" encoding="UTF-8"?>
 <sld:StyledLayerDescriptor
 xmlns="http://www.opengis.net/sld"
 xmlns:sld="http://www.opengis.net/sld"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:gml="http://www.opengis.net/gml"
 version="1.0.0">
 <sld:NamedLayer>
 <sld:Name>countries</sld:Name>
 <sld:UserStyle>
 <sld:Name>Countries</sld:Name>
 <sld:Title>Countries</sld:Title>
 <sld:FeatureTypeStyle>
 <sld:Name>countries</sld:Name>
 <sld:Rule>
 <sld:PolygonSymbolizer>
 <sld:Fill>
 <sld:CssParameter name="fill">#EDEDED</sld:CssParameter>
 </sld:Fill>
 <sld:Stroke>
 <sld:CssParameter name="stroke">#969696</sld:CssParameter>
 <sld:CssParameter name="stroke-width">0.5</sld:CssParameter>
 </sld:Stroke>
 </sld:PolygonSymbolizer>
 <sld:TextSymbolizer>
 <sld:Label>
 <ogc:PropertyName>name</ogc:PropertyName>
 </sld:Label>
 <sld:Font>
 <CssParameter name="font-family">DejaVu Sans</CssParameter>
 <CssParameter name="font-size">10</CssParameter>
 </sld:Font>
 <sld:LabelPlacement>
 <sld:PointPlacement>
 <sld:AnchorPoint>
 <sld:AnchorPointX>0.5</sld:AnchorPointX>
 <sld:AnchorPointY>0.5</sld:AnchorPointY>
 </sld:AnchorPoint>
 </sld:PointPlacement>
 </sld:LabelPlacement>
 <sld:Halo>
 <sld:Radius>1</sld:Radius>
 <sld:Fill>
 <CssParameter name="fill">#FFFFFF</CssParameter>
 </sld:Fill>
 </sld:Halo>
 <sld:Fill>
 <CssParameter name="fill">#707070</CssParameter>
 </sld:Fill>
 </sld:TextSymbolizer>
 </sld:Rule>
 </sld:FeatureTypeStyle>
 </sld:UserStyle>
 </sld:NamedLayer>
 </sld:StyledLayerDescriptor>

	Go to Data ❭ Layers, search for countries and select it in the list.

[image:]

	Go to tab Publishing.

[image:]

	Select momo:countries in dropdown list Default Style.

[image:]

	Click Save.

	Open the layer preview for the layer countries and you will see that the
 layer will have a new appearance (light grey polygon fill) including labels
 for each country.

[image: Layer preview centered to mongolia.]Layer preview centered to mongolia.

 Raster layers

 Raster layers

In this section we will learn how to prepare a large GeoTIFF file with GDAL,
set up a new raster store and publish a new raster layer with GeoServer.

	Prepare large GeoTIFF with GDAL

	Create a new ImagePyramid datastore

	Publish a new raster layer

	Preview the layer using GeoServer's layer preview

 Preparation

 Preparing the data

An image pyramid builds multiple mosaics of images, each one at a different zoom
level, making it so that each tile is stored in a separate file. This comes with
a composition overhead to bring back the tiles into a single image, but can speed
up image handling as each overview is tiled, and thus a sub-set of it can be
accessed efficiently (as opposed to a single GeoTIFF, where the base level
can be tiled, but the overviews never are).

Out input raster from natural earth is a simple huge GeoTIFF file (~400MB)
without overviews. Not exactly what we'd want to use for high performance data
serving, but good for redistribution and as a starting point to build a pyramid.

In order to build the pyramid we'll use the gdal_retile.py utility, part of
the GDAL command line utilities and available for various operating systems.

	Open terminal and navigate to directory ~/materials/natural_earth/OB_LR.

	Create a new folder named pyramid with:

$ mkdir OB_LR_pyramid/

	Run the following command that will build a pyramid (Note: This may take a while!):

$ gdal_retile.py -v \
 -s_srs EPSG:4326 \
 -r bilinear \
 -levels 4 \
 -ps 512 512 \
 -co "TILED=YES" \
 -co "COMPRESS=JPEG" \
 -targetDir OB_LR_pyramid/ \
 OB_LR.tif

Short explanation:

	-v: Verbose output, allows the user to see each file creation scroll
 by, thus knowing progress is being made.

	-r bilinear: Use bilinear interpolation when building the lower
 resolution levels. This is key to get good image quality without asking
 GeoServer to perform expensive interpolations in memory.

	-levels 4: The number of levels in the pyramid.

	-ps 512 512: Each tile in the pyramid will be a 512x512 GeoTIFF.

	-co "TILED=YES": Each GeoTIFF tile in the pyramid will be inner tiled.

	-co "COMPRESS=JPEG": Each GeoTIFF tile in the pyramid will be JPEG
 compressed (trades small size for higher performance, try out it without
 this parameter too).

	-targetDir pyramid: Build the pyramid in the pyramid directory. The
 target directory must exist and be empty

	OB_LR.tif: The source file

	As GeoServer needs to have read and write access to the pyramid we just
 created, we'll move the OB_LR_pyramid folder to the GeoServer data directory:

$ sudo mv OB_LR_pyramid/ /opt/tomcat/webapps/geoserver/data/data/

	Navigate to the data directory:

$ cd /opt/tomcat/webapps/geoserver/data/data/

	Assign read and write access to the tomcat user:

$ sudo chown -R tomcat:tomcat OB_LR_pyramid; sudo chmod -R 755 OB_LR_pyramid/

 Store

 Creating a new store

	Go to Data ❭ Stores ❭ Add a new Store

	Select ImagePyramid

[image:]

	Create the new store as follows:
	Workspace: momo

	Data Source name: ocean-bottom-relief

	Enabled: checked

	URL: file:data/OB_LR_pyramid

[image:]

	Click Save.

 Layer

 Publishing a layer

Once the new store is created, GeoServer automatically gives us the option of
publishing layers from this store. Here we chose the entry OB_LR_pyramid by
clicking Publish.

[image: Configure ImagePyramid store]Configure ImagePyramid store
Minimal layer configuration

After publishing, GeoServer automatically gives us the option of configuring the
newly created layer. For the moment, we want to set up the layer with some basic
configuration only. Thus we ignore custom styling or caching that will be
handled later on.

	Configure the new layer as follows:
	Name: ocean-bottom-relief

	Enabled: checked

	Advertised: checked

	Title: Ocean bottom relief

	Abstract: Blended depth colors and relief shading of the ocean bottom derived from CleanTOPO2 data.

	Native SRS: EPSG:4326

	Declared SRS: EPSG:4326

	SRS handling: Keep native

	Let GeoServer calculate the bounds of the data by clicking
 Compute from data.

	Convert the native bounds to the Lat/Lon Bounding Box by clicking
 Compute from native bounds.

[image:]

	Click Save.

 Preview

 Previewing a layer

You just published the raster layer with GeoServer! Now let's see how it looks
by using the Layer Preview.

	Navigate to Data ❭ Layer Preview

	Search for ocean.

	Click OpenLayers.

[image: The bathymetry layer.]The bathymetry layer.

 Group layers

 Group layers

In this section we will learn how to set up a new grouped layer with GeoServer.

	Publish a new grouped layer

	Preview the layer using GeoServer's layer preview

 Layer

 Layer group

A layer group, as its name suggests, is a collection of layers. A layer group
makes it possible to request multiple layers with a single WMS request. A layer
group contains information about the layers that comprise the layer group, the
order in which they are rendered, the projection, associated styles, and more.
This information can be different from the defaults for each individual layer.

Layer groups do not respect the concept of workspace, and are relevant only to
WMS requests.

Create grouped layer

Use countries and ocean bottom relief

	Go to Data ❭ Layer Groups ❭ Add new layer group.

	Create a new layer group as follows:
	Name: world-layer

	Title: World layer

	Workspace: momo

	Find and select EPSG:4326 under Coordinate Reference System.

[image:]

	Click Layers ❭ Add Layer, search for ocean-bottom and click the
 ocean-bottom-relief in the list to add the layer to the group.

[image:]

	Repeat the step above for layer countries.

	Let GeoServer generate the bounds for this layer by pressing Generate bounds.

[image:]

	Click Save.

 Preview

 Previewing a layer

You just published the group layer with GeoServer! Now let's see how it looks
by using the Layer Preview.

	Navigate to Data ❭ Layer Preview

	Search for world-layer.

	Click OpenLayers.

[image: The group layer centered to the Philippines]The group layer centered to the Philippines

 Advanced

 GeoServer Advanced

In this section we'll learn two aspects of advanced usage of GeoServer, where
we'll focus on the confiuguration via the REST interface and the caching of
layers with the built-in caching engine GeoWebCache.

	REST API

	Caching with GeoWebCache

 REST

 Excursion: REST interface

This chapter will give you a short introduction to GeoServers REST (
Representational State Transfer) interface.
The REST API allows you to read, write, update and remove (almost) all GeoServer
catalog elements directly via the HTTP protocol. These can include, for example,
the manipulation of workspaces, data storages, layer styles and layers itself. A
benefit of using the REST interface is that you can script recurring steps of
work, for instance publishing a large number of layers at once from a remote
machine.

[image: Principle of operation, source: https://github.com/boundlessgeo/workshops/blob/master/workshops/geoserver/adv/doc/source/catalog/img/rest_theory.png]Principle of operation, source: https://github.com/boundlessgeo/workshops/blob/master/workshops/geoserver/adv/doc/source/catalog/img/rest_theory.png
What is REST?

REST (sometimes as ReST) is an acronym for Representational State Transfer
and is an architectural style for the realization of web services and is therefore
frequently mentioned in connection with RESTful Webservices. The idea behind
is that one should be able to use simple and lightweight HTTP calls to connect
between (web-)clients and remote servers.
So the capabilities of the REST API consists of the actions (verbs) we can use
to make HTTP requests combined with the configurable resources in GeoServer. For
each of the resources in GeoServer (workspaces, stores, layers, styles, layer
groups, etc.) we can perform the following operations (source):

	Operation
	Description

	GET
	The GET method requests a representation of the specified resource. Requests using GET should only retrieve data and should have no other effect.

	POST
	The POST method requests that the server accept the entity enclosed in the request as a new subordinate of the web resource identified by the URI.

	PUT
	The PUT method requests that the enclosed entity be stored under the supplied URI. If the URI refers to an already existing resource, it is modified; if the URI does not point to an existing resource, then the server can create the resource with that URI.

	PATCH
	The PATCH method applies partial modifications to a resource.

	DELETE
	The DELETE method deletes the specified resource.

	HEAD
	The HEAD method asks for a response identical to that of a GET request, but without the response body. This is useful for retrieving meta-information written in response headers, without having to transport the entire content.

	OPTIONS
	The OPTIONS method returns the HTTP methods that the server supports for the specified URL.

	CONNECT
	The CONNECT method converts the request connection to a transparent TCP/IP tunnel, usually to facilitate SSL-encrypted communication (HTTPS) through an unencrypted HTTP proxy.

	TRACE
	The TRACE method echoes the received request so that a client can see what (if any) changes or additions have been made by intermediate servers.

To sum it up, in the GeoServer REST API we are able to use the methods as follows:

	GET to read an existing resource

	POST to add a new resource

	PUT to update an existing resource

	DELETE to remove a resource

In relation to the methods mentioned above each request will respond with a
certain response code:

	Status code
	Status text
	Description

	200
	OK
	Request was successful

	201
	Created
	A resource (e.g. a layer) was successfully created

	403
	Forbidden
	Not authorized

	404
	Not Found
	Resource or endpoint not found

	405
	Method Not Allowed
	Wrong operation for resource or endpoint (e.g. GET-request, but only PUT/POST allowed)

	500
	Internal Server Error
	Error while execution (e.g. syntax error in request)

 Read

 Reading the catalog

In this module we will learn how to read out the GeoServer configuration via the
REST API.

As already mentioned in the previous chapter, a key condition of REST is the
addressability. Thereby each catalog configuration (= resource or endpoint) in
GeoServer has an unique URL.

At first we will investigate the REST API via the browser. At the same time we
are using the HTTP operation GET to retrieve information from the server.

	Open up a browser window and navigate to the following URL (Note: You will be
 prompted for your GeoServer user and password): http://localhost/geoserver/rest

 [image:]

You will see a simple HTML list which contains the top endpoints provided by the
REST API. The list view is fully controllable and clearly assigned. A selection
in the browser (for example the entry workspaces) navigates the browser to
unique URL http://localhost/geoserver/rest/workspaces. The structure
of the list (when selecting a workspace) follows the logical structure of the
GeoServer catalog we already met in the previous sections:

workspace
 |
 +--datastore
 |
 +--featuretype

The above actions in the browser will call an endpoint in HTML format by default.
The GeoServer also supports the formats JSON (JavaScript Object Notation) and
XML (Extensible Markup Language), which are particularly relevant in the
manipulation of a resource we will use later on.

	Switch to a new tab in your browser. Then open and compare the following
 outputs:

 http://localhost/geoserver/rest/workspaces

 http://localhost/geoserver/rest/workspaces.json

 http://localhost/geoserver/rest/workspaces.xml

	In the next step we want to get a full description of the feature type
 countries we created in the previous module in format JSON. Copy the
 following request in your browser and explore the output:

 http://localhost/geoserver/rest/workspaces/momo/datastores/db_momo_ws/featuretypes/countries.json

 Create

 Creating a new resource

In this exercise we are going to use the REST interface in combination with the
HTTP operations POST and PUT to create a resource on the server. In
contrast to the previous module here we are going to use the command line tool
cURL to access the catalog. cURL is a command line tool to transfer data from
or to a server using one of the supported protocols (e.g. HTTP or FTP). For more
about the tool have a look at here.

Creating a new workspace

In this module we are going to repeat the steps we have done in chapter
Publishing a vector layer. But as we
don't want to override our progress (or any individual changes) made to the
workspace momo, we will create new workspace momo-rest for the ensuing
exercises.

	Open up the terminal (if not already openend) and type in the following
 command to create a new workspace named momo-rest: $ curl \
 -v \
 -u admin:momo-ws\
 -XPOST \
 -H "Content-type: text/xml" \
 -d "<workspace>
 <name>momo-rest</name>
 </workspace>" \
 http://localhost/geoserver/rest/workspaces

 The call above differs in two essential points from the previous read operations:
 Unlike the HTTP operation GET we use the operation POST and in addition we
 transfer a XML content containing a simple workspace definition to the unique
 endpoint workspaces.

	Hit Enter to execute the above command and you will see an output like this: * Hostname was NOT found in DNS cache
 * Trying 127.0.0.1...
 * Connected to localhost (127.0.0.1) port 80 (#0)
 * Server auth using Basic with user 'admin'
 > POST /geoserver/rest/workspaces HTTP/1.1
 > Authorization: Basic YWRtaW46Z2Vvc2VydmVy
 > User-Agent: curl/7.35.0
 > Host: localhost:80
 > Accept: */*
 > Content-type: text/xml
 > Content-Length: 57
 >
 * upload completely sent off: 57 out of 57 bytes
 < HTTP/1.1 201 Created
 < Date: Wed, 03 Feb 2016 10:30:39 GMT
 < Location: http://localhost:80/geoserver/rest/workspaces/momo-rest
 * Server Noelios-Restlet-Engine/1.0..8 is not blacklisted
 < Server: Noelios-Restlet-Engine/1.0..8
 < Transfer-Encoding: chunked
 <
 * Connection #0 to host localhost left intact

 Here, two informations are crucial to us:
	HTTP/1.1 201 Created: The request has been successfully processed and
 the resource has been created.

	http://localhost/geoserver/rest/workspaces/momo-rest: The REST endpoint
 URL of our new workspace.

	We can verify that the workspace was actually created either by using the
 GeoServer UI or the REST interface:
	Open the GeoServer user interface, navigate
 to the page Data ❭ Workspaces and ensure a new workspace named
 momo-rest is available in the list.

	Open the terminal and run the following command to get a XML representation
 of all available workspaces: $ curl \
 -v \
 -u admin:momo-ws \
 -XGET \
 -H "Accept: text/xml" \
 http://localhost/geoserver/rest/workspaces

Creating a new store

Now that we have created a new workspace, we'll add a new data store to it. Here
we are reusing the database we already created (and
added to the geoserver).

	Open the terminal and insert the following command to create a new PostGIS
 datastore named db_momo_ws_rest: $ curl \
 -v \
 -u admin:momo-ws \
 -XPOST \
 -H "Content-type: text/xml" \
 -d "<dataStore>
 <name>db_momo_ws_rest</name>
 <connectionParameters>
 <host>localhost</host>
 <port>5432</port>
 <database>db_momo_ws</database>
 <schema>geodata</schema>
 <user>momo</user>
 <passwd>momo</passwd>
 <dbtype>postgis</dbtype>
 </connectionParameters>
 </dataStore>" \
 http://localhost/geoserver/rest/workspaces/momo-rest/datastores

	Hit Enter to execute the command. This will result in the following output,
 assuring that the store was successfully created: * Hostname was NOT found in DNS cache
 * Trying 127.0.0.1...
 * Connected to localhost (127.0.0.1) port 80 (#0)
 * Server auth using Basic with user 'admin'
 > POST /geoserver/rest/workspaces/momo-rest/datastores HTTP/1.1
 > Authorization: Basic YWRtaW46Z2Vvc2VydmVy
 > User-Agent: curl/7.35.0
 > Host: localhost:80
 > Accept: */*
 > Content-type: text/xml
 > Content-Length: 347
 >
 * upload completely sent off: 347 out of 347 bytes
 < HTTP/1.1 201 Created
 < Date: Wed, 03 Feb 2016 10:59:04 GMT
 < Location: http://localhost:80/geoserver/rest/workspaces/momo-rest/datastores/db_momo_ws_rest
 * Server Noelios-Restlet-Engine/1.0..8 is not blacklisted
 < Server: Noelios-Restlet-Engine/1.0..8
 < Transfer-Encoding: chunked
 <
 * Connection #0 to host localhost left intact

	Once again we can verify the successful creation in the GeoServer UI (Data
 ❭ Stores).

Publishing a layer

In the next step we're going to publish the table tbl_countries as a new layer.

	Open the terminal and insert the following command to create a new feature
 type (and layer) named countries_rest: $ curl \
 -v \
 -u admin:momo-ws \
 -XPOST \
 -H "Content-type: text/xml" \
 -d "<featureType>
 <name>countries_rest</name>
 <nativeName>tbl_countries</nativeName>
 <title>Countries</title>
 <nativeCRS>EPSG:4326</nativeCRS>
 <enabled>true</enabled>
 </featureType>" \
 http://localhost/geoserver/rest/workspaces/momo-rest/datastores/db_momo_ws_rest/featuretypes

	And again, verify that the response contains the lines HTTP/1.1 201 Created

 and Location: http://localhost/geoserver/rest/workspaces/momo-rest/datastores/db_momo_ws_rest/featuretypes/countries_rest

	Additionally we can also have a look at the preview page
 to ensure the layer is correctly published.

Create and upload style

We can use the REST API both to create a new style object in GeoServer and to
insert an existing SLD-file into it. At first we need to create a new SLD file
on our local machine we'll need in the next step. For this purpose we can use
the style already used in the previous module.

	Open the terminal and navigate to your home directory with: $ cd ~

	Create and open a new SLD file countries-style.sld in this directory with: $ nano countries-style.sld

	Copy the linked SLD content (see here)
 the newly created file and save it with Ctrl + O. You can now close the
 nano editor with Ctrl + X.

We will now create the style and upload the SLD file we just created.

	Copy the following block into your terminal and execute it to create a new
 style object: $ curl \
 -v \
 -u admin:momo-ws \
 -XPOST \
 -H "Content-type: text/xml" \
 -d "<style>
 <name>countries_rest</name>
 <filename>countries-style.sld</filename>
 </style>" \
 http://localhost/geoserver/rest/workspaces/momo-rest/styles

	And again, verify that the response contains the lines HTTP/1.1 201 Created

 and Location: http://localhost:80/geoserver/rest/workspaces/momo-rest/styles/countries_rest

	Afterwards we can upload the style created above with (Note: Ensure the path
 to file countries-style.sld is correct!): $ curl \
 -v \
 -u admin:momo-ws \
 -XPUT \
 -H "Content-type: application/vnd.ogc.sld+xml" \
 -d @countries-style.sld \
 http://localhost/geoserverrest/workspaces/momo-rest/styles/countries_rest

	This command should complete with: HTTP/1.1 200 OK

Assign a layer style

After we have created the style, we can assign this style to the layer
countries_rest.

	Copy and execute the following command in the terminal window: $ curl \
 -v \
 -u admin:momo-ws \
 -XPUT \
 -H "Content-type: text/xml" \
 -d "<layer>
 <defaultStyle>
 <name>countries_rest</name>
 <workspace>momo-rest</workspace>
 </defaultStyle>
 </layer>" \
 http://localhost/geoserver/rest/layers/momo-rest:countries_rest

	After finished with HTTP/1.1 200 OK we can open the preview page
 to review the changes made to the layer style.

[image: Layer created and styled via the REST API.]Layer created and styled via the REST API.

 Update

 Updating a layer

Basically we can change every element of catalog by the use of the REST API. In
the following example we will change the countries_rest layer's default output
projection to EPSG:54009 (Mollweide projection).

	Execute the following terminal command to update the layer countries_rest.
 (Note: Every update needs the property <enabled>true</enabled>

 otherwise the catalog entry, in this case the layer, will be disabled and not
 be visible to any user!)

 $ curl \
 -v \
 -u admin:momo-ws \
 -XPUT \
 -H "Content-type: text/xml" \
 -d "<featureType>
 <enabled>true</enabled>
 <srs>EPSG:54009</srs>
 <projectionPolicy>REPROJECT_TO_DECLARED</projectionPolicy>
 </featureType>" \
 http://localhost/geoserver/rest/workspaces/momo-rest/datastores/db_momo_ws_rest/featuretypes/countries_rest

	After this step has been confirmed as successfully finished with HTTP / 1.1 200 OK,
 we can then automatically calculate the new native and lat/lon bounding box
 of the layer by appending the parameter recalculate=nativebbox,latlonbbox
 to the REST URL: $ curl \
 -v \
 -u admin:momo-ws \
 -XPUT \
 -H "Content-type: text/xml" \
 -d "<featureType>
 <enabled>true</enabled>
 </featureType>" \
 http://localhost/geoserver/rest/workspaces/momo-rest/datastores/db_momo_ws_rest/featuretypes/countries_rest?recalculate=nativebbox,latlonbbox

	Review that the layer has been updated correctly by opening the layer
 configuration in the GeoServer UI (Data ❭ Layers) and have a look
 at the subsection Coordinate Reference System and Bounding Boxes, which
 should contain your requested changes.

[image:]

	Finally have a look at the layer preview page and note, that the default SRS
 is set to EPSG:54009.

[image: Layer in EPSG:54009.]Layer in EPSG:54009.

 Delete

 Remove a resource

You should have noticed that the layer countries is available twice now. The
first one was created "manually" by the use of the GeoServer UI, the second one
via the REST API. Because we don't want to unnecessarily publish a layer twice
(and of course to learn how to delete a resource by means of REST), we will
delete the countries_rest layer by using the HTTP operation DELETE.

	Execute the following command to delete the feature type countries_rest and
 the corresponding layer by appending recurse=true to the request: $ curl \
 -v \
 -u admin:momo-ws \
 -XDELETE \
 http://localhost/geoserver/rest/workspaces/momo-rest/datastores/db_momo_ws_rest/featuretypes/countries_rest?recurse=true

	After the above command has successfully executed with HTTP/1.1 200 OK try
 to find the layer in the GeoServer Layer configuration page and if anything
 worked fine, you shouldn't be able to find it [image: :wink:]

 GeoWebCache

 GeoWebCache

The most common request to GeoServer is to provide an OGC-compliant WMS interface
and thus generating maps in raster format. For this reason, caching of these
WMS requests may have a decisive influence to the performance of the server
and should be carried out on each (productive) system wherever possible.
For caching map tiles there is a variety of good open source caching engines
available, but here we'll use the GeoServer integrated GeoWebCache (GWC), which
acts as a proxy between the client and GeoServer.

[image: GeoWebCache as proxy, source: http://geowebcache.org/docs/current/_images/how_it_works.png]GeoWebCache as proxy, source: http://geowebcache.org/docs/current/_images/how_it_works.png
In the following sections we'll initiate all required steps to generate a cache
for the layer momo:countries:

	Prerequisites

	Configure a new gridset

	Configure a cached layer

	Generate map tiles.

	Check cache directory

	Check cache-headers

 Prerequisites

 Prerequisites

Before we can start caching a set of layers we need to configure a directory
where GWC should save all cached tiles. To accomplish this, please follow these
steps:

	Open the terminal and create the cache directory (Note: You'll be prompted
 for the admin password): $ sudo mkdir /opt/tomcat/webapps/geoserver/data/gwc

	Ensure GeoServer has read and write access to this directory by changig the
 ownership to user and group tomcat: $ sudo chown tomcat:tomcat /opt/tomcat/webapps/geoserver/data/gwc

	Open the terminal and copy the following command to open the file web.xml
 in the text editor gedit: $ sudo gedit /opt/tomcat/webapps/geoserver/WEB-INF/web.xml

	The following block will advise GWC to store all cached tiles into the directory
 /opt/tomcat/webapps/geoserver/data/gwc. Insert it at line ~64 in the
 already opened file. <!-- The GWC data directory-->
 <context-param>
 <param-name>GEOWEBCACHE_CACHE_DIR</param-name>
 <param-value>/opt/tomcat/webapps/geoserver/data/gwc</param-value>
 </context-param>

	Save the changes and close the text editor.

	To apply the changes, we need to restart GeoServer. Go to your terminal and
 run the following command: $ sudo restart tomcat

	Open the newly created directory in the terminal to check there is a file
 named geowebache.xml only: $ cd /opt/tomcat/webapps/geoserver/data/gwc

 Configure a new gridset

 Tiles and gridsets

Tiles

GeoWebCache caches images retrieved from a WMS. The smallest unit of image
cached is known as a tile. All tiles are assumed to be the same dimensions and
are typically square (i.e. 256 pixels by 256 pixels). The tiles are stored in a
rectangular grid, indexed by (x,y) coordinates. A z coordinate (zero-indexed) is
used to denote the zoom level, resulting in each tile being indexed as a
triplet (x,y,z).

Gridsets

Gridsets and gridsubsets refer to the spatial reference system of the layers
served by GeoWebCache. When GeoWebCache makes a request to a WMS, it uses the
gridset and gridsubset information to convert its internal tile index to a
spatial request that the WMS will understand.

[image: Composition of a gridset, source: http://3.bp.blogspot.com/_0_xIiXP5xuY/S5pEpCjenaI/AAAAAAAAAKY/PDKTGZ6vzGI/s1600-h/Image_Pyramid.gif]Composition of a gridset, source: http://3.bp.blogspot.com/_0_xIiXP5xuY/S5pEpCjenaI/AAAAAAAAAKY/PDKTGZ6vzGI/s1600-h/Image_Pyramid.gif
A gridset is a global definition (i.e. not layer-specific) specifying:

	A spatial reference system.

	A bounding box describing the extent, typically the maximum extent for the
 above reference system.

	One of either a list of scale denominators, resolutions, or zoom levels.

	The tile dimensions in pixels (constant for all zoom levels).

A gridsubset is a layer-specific definition specifying:

	The gridset for the layer.

	(Optional) The bounding box for that layer (which must be a subset of the
 extent of the gridSet).

	(Optional) A list of zoom levels (which must be a subset of what is defined
 in the gridSet).

 For further instructions have a look at the source of the above
 explanations, here.

Configure a new gridset

So, our first step will be to create a new gridset:

	Go to Tile Caching ❭ Gridsets

[image:]

	Click Create a new gridset to create a new gridset and use the following
 options for the creation:
	Name: momo-4326

	Coordinate Reference System: Use the find-button to select EPSG:4326

	Gridset bounds: Click Compute from maximum extent of CRS

	Tile width in pixels: 512

	Tile height in pixels: 512

	Define grids based on: Select Scale denominators

	Click Add zoom level to create a new zoom level. Enter the scale 300.000.000
 and the name 0.

	Once again click Add zoom level. You will see that the scale value is
 automatically cut into halves (150.000.000). Just enter the name 1 and
 repeat this step until you reached a total count of 8 zoom levels. The last
 scale value should be 2.343.750.

[image:]

	Click Save.

 Configure a cached layer

 Cached layer

In the next step we'll configure the layer countries to apply to all needed
cache-properties.

	Go to Data ❭ Layers and select the countries layer.

	Open the panel Tile Caching.

Here we can configure all GWC-dependend properties in a per-layer-basis. The
most important configuration parameters are:

	Create a cached layer for this layer: Should this layer be cached?

	Metatiling factors: Metatiles are larger map tiles from which the cached tiles
 will be cut. The factor in this case indicates the size of the metatiles. A
 factor of 3x3 means that the screen width of the target tile is increased
 by a factor of three that results (by a requested tile size of 256px) in an
 metatile tile size of 768px. Primarily metatiles are needed to prevent
 duplicate map labels (for example for road layers) in two adjacent tiles.

	Gutter size in pixels: Additional frame (in px) to be requested by a tile.
 Only useful when there are layout problems in the preparation of labels and/or
 features on the tile edge in conjunction with the use of metatiles.

	Tile Image Formats: The standard image format for the tiles.

	STYLES: Is there any other style existing for the given layer that should be
 cached, it must be selected here. In most cases it will be sufficient to set
 the default layer styles (LAYER DEFAULT) only.

	Gridset: The gridset defines the grid the stored tiles are indexed and thus
 defines the spatial index of the individual tiles. The single tile in the
 rectangular grid is identified by means of a x, y, z coordinate triple. The
 x and y coordinates determine the horizontal and vertical position, the z
 coordinate the zoom level. See previous chapter as well.

Configure a cached layer

With this in mind, we can configure the layer countries as follows:

	Select the following values:
	Create a cached layer for this layer: checked

	Enable tile caching for this layer: checked

	Metatiling factors: 4 x 4

	Gutter size in pixels: 0

	Tile Image Formats: Check image/png only

	Expire server cache after n seconds: 0

	Expire client cache after n seconds: 0

	Styles: Select LAYER DEFAULT

	Gridset: Select momo-4326 in the Add grid subset combobox and click the
 green plus icon. Remove any other preconfigured gridset by clicking the red
 minus icon.

[image:]

	Click Save.

 Generate map tiles

 Generate map tiles

Generally speaking, GWC applies two methods for creating cached map tiles:

	On-the-fly processing: If a GWC layer is primarily requested by a client,
 the appropriate map tiles are rendered and subsequently stored in the GWC
 data directory. The next client, requesting the same layer on the same location
 receives a (much faster) response from the cache.

	Preprocessing of map tiles: The tiles of a layer will be preprocessed and
 stored in a defined bounding box and in defined zoom levels along the given
 gridset. In contrast to the on-the-fly calculation, this method requires,
 depending on the available system resources, significantly more computing
 time, but all clients will receive a direct response from the cache.

With the following steps we'll preprocess the tiles and start the so called
Seeding job.

	Go to Tile Caching ❭ Tile Layers.

	Find the layer momo:countries and select Seed/Truncate.

[image:]

	In the upcoming mask we can configure a GWC-task for seeding the layers
 countries. Here we can use the following configuration:
	Number of tasks to use: 04

	Type of operation: Reseed - regenerate all tiles (The option
 Seed - generate missing tiles would behave the same here as we haven't
 any cache present)

	Grid Set: momo-4326

	Format: image/png

	Zoom start: 00

	Zoom stop: 07

[image:]

	Click Submit.

	In the same window the section List of currently executing tasks will be
 filled with the recent tasks and involves some basic informations about it.

[image:]

	Depending on your system resources the seeding tasks should not cover more
 than a few minutes. Click Refresh list to see if the tasks are finished
 or not.

 Check cache directory

 Checking the cache directory

Once all tasks are completed, we should verify the content of the cache directory
we created above. Given that everything worked fine in the previous step, the
cache directory should contain a lot of tiles building up the tile pyramid for
the layer countries.

	Open the terminal and navigate to the GWC cache directory for the countries
 layer: $ cd /opt/tomcat/webapps/geoserver/data/gwc/momo_countries

	List the directory contents with: $ ls -l

	Explore that the cache directory is built up by following pattern: momo_countries/ (layername)
 |
 +-- momo-4326_07/ (gridset name + zoom level)
 |
 +-- 07_03/ (internal notation based on gridset + zoom level)
 |
 +-- 0119_0057.png (tile index)

 Check cache-headers

 Checking the cache-headers

Finally we are going to inspect the response send from the GeoServer/GeoWebCache
to the client in more detail. As soon as a layer is being cached by GeoWebCache,
the response headers of single tile are extended by the following HTTP-headers:

	Header
	Description

	geowebcache-cache-result
	If the tile is delivered by the cache, the value is HIT otherwise it's MISS.

	geowebcache-crs
	The coordinate system of the tile.

	geowebcache-gridset
	The name of the underlying gridset.

	geowebcache-tile-bounds
	The bounding box of the tile.

	geowebcache-tile-index
	The index of the tile (x, y, z) in the gridset.

To check if these headers are set, we need to open the GeoServer user interface
again:

	Go to Tile Caching ❭ Tile Layers.

	Find the layer momo:countries and select momo-4326 / png under Preview.

[image:]

	In the preview window/tab press F12 to open the browsers Developer Toolbar,
 activate the Network tab, select the Img subsection and reload the page
 to record the network activity.

[image:]

	Clear the list content with the Clear button ([image:])

	Zoom in to a location of your choice, find a WMS GetMap request in the
 developer toolbar and select it. Explore the right hand sided information panel
 and find the Response Headers section. In this you should find the headers
 looking similar the following ones: geowebcache-cache-result:HIT
 geowebcache-crs:EPSG:4326
 geowebcache-gridset:momo-4326
 geowebcache-tile-bounds:158.05400771985825,54.880289022796376,206.3474373941237,103.17371869706184
 geowebcache-tile-index:[7, 3, 3]

 JavaScript

 Learn Javascript

This book will teach you the basics of programming and Javascript. Whether you are an experienced programmer or not, this book is intended for everyone who wishes to learn the JavaScript programming language.

[image: Screen]Screen
JavaScript (JS for short) is the programming language that enables web pages to respond to user interaction beyond the basic level. It was created in 1995, and is today one of the most famous and used programming languages.

 Basics

 Basics about Programming

In this first chapter, we'll learn the basics of programming and the Javascript language.

Programming means writing code. A book is made up of chapters, paragraphs, sentences, phrases, words and finally punctuation and letters, likewise a program can be broken down into smaller and smaller components. For now, the most important is a statement. A statement is analogous to a sentence in a book. On its own, it has structure and purpose, but without the context of the other statements around it, it isn't that meaningful.

A statement is more casually (and commonly) known as a line of code. That's because statements tend to be written on individual lines. As such, programs are read from top to bottom, left to right. You might be wondering what code (also called source code) is. That happens to be a broad term which can refer to the whole of the program or the smallest part. Therefore, a line of code is simply a line of your program.

Here is a simple example:

var hello = "Hello";
var world = "World";

// Message equals "Hello World"
var message = hello + " " + world;

This code can be executed by another program called an interpreter that will read the code, and execute all the statements in the right order.

 Comments

 Comments

Comments are statements that will not be executed by the interpreter, comments are used to mark annotations for other programmers or small descriptions of what your code does, thus making it easier for others to understand what your code does.

In Javascript, comments can be written in 2 different ways:

	Line starting with //:

// This is a comment, it will be ignored by the interpreter
var a = "this is a variable defined in a statement";

	Section of code starting with /*and ending with */, this method is used for multi-line comments:

/*
This is a multi-line comment,
it will be ignored by the interpreter
*/
var a = "this is a variable defined in a statement";

 Exercise

Mark the editor's contents as a comment

 Mark me as a comment
or I'll throw an error

 Variables

 Variables

The first step towards really understanding programming is looking back at algebra. If you remember it from school, algebra starts with writing terms such as the following.

3 + 5 = 8

You start performing calculations when you introduce an unknown, for example x below:

3 + x = 8

Shifting those around you can determine x:

x = 8 - 3
-> x = 5

When you introduce more than one you make your terms more flexible - you are using variables:

x + y = 8

You can change the values of x and y and the formula can still be true:

x = 4
y = 4

or

x = 3
y = 5

The same is true for programming languages. In programming, variables are containers for values that change. Variables can hold all kind of values and also the results of computations. Variables have a name and a value separated by an equals sign (=). Variable names can be any letter or word, but bear in mind that there are restrictions from language to language of what you can use, as some words are reserved for other functionality.

Let's check out how it works in Javascript, The following code defines two variables, computes the result of adding the two and defines this result as a value of a third variable.

var x = 5;
var y = 6;
var result = x + y;

 Types

 Variable types

Computers are sophisticated and can make use of more complex variables than just numbers. This is where variable types come in. Variables come in several types and different languages support different types.

The most common types are:

	Numbers
	Float: a number, like 1.21323, 4, -33.5, 100004 or 0.123

	Integer: a number like 1, 12, -33, 140 but not 1.233

	String: a line of text like "boat", "elephant" or "damn, you are tall!"

	Boolean: either true or false, but nothing else

	Arrays: a collection of values like: 1,2,3,4,'I am bored now'

	Objects: a representation of a more complex object

	null: a variable that contains null contains no valid Number, String, Boolean, Array, or Object

	undefined: the undefined value is obtained when you use an object property that does not exist, or a variable that has been declared, but has no value assigned to it.

JavaScript is a “loosely typed” language, which means that you don't have to explicitly declare what type of data the variables are. You just need to use the var keyword to indicate that you are declaring a variable, and the interpreter will work out what data type you are using from the context, and use of quotes.

 Exercise

Create a variable named `a` using the keyword `var`.

 Equality

 Equality

Programmers frequently need to determine the equality of variables in relation to other variables. This is done using an equality operator.

The most basic equality operator is the == operator. This operator does everything it can to determine if two variables are equal, even if they are not of the same type.

For example, assume:

var foo = 42;
var bar = 42;
var baz = "42";
var qux = "life";

foo == bar will evaluate to true and baz == qux will evaluate to false, as one would expect. However, foo == baz will also evaluate to true despite foo and baz being different types. Behind the scenes the == equality operator attempts to force its operands to the same type before determining their equality. This is in contrast to the === equality operator.

The === equality operator determines that two variables are equal if they are of the same type and have the same value. With the same assumptions as before, this means that foo === bar will still evaluate to true, but foo === baz will now evaluate to false. baz === qux will still evaluate to false.

 Numbers

 Numbers

JavaScript has only one type of numbers – 64-bit float point. It's the same as Java's double. Unlike most other programming languages, there is no separate integer type, so 1 and 1.0 are the same value.

In this chapter, we'll learn how to create numbers and perform operations on them (like additions and subtractions).

 Creation

 Creation

Creating a number is easy, it can be done just like for any other variable type using the var keyword.

Numbers can be created from a constant value:

// This is a float:
var a = 1.2;

// This is an integer:
var b = 10;

Or from the value of another variable:

var a = 2;
var b = a;

 Exercise

Create a variable `x` which equals `10` and create a variable `y` which equals `a`.

 var a = 11;

 Basic Operators

 Operators

You can apply mathematic operations to numbers using some basic operators like:

	Addition: c = a + b

	Subtraction: c = a - b

	Multiplication: c = a * b

	Division: c = a / b

You can use parentheses just like in math to separate and group expressions: c = (a / b) + d

 Exercise

Create a variable `x` equal to the sum of `a` and `b` divided by `c` and finally multiplied by `d`.

 var a = 2034547;
var b = 1.567;
var c = 6758.768;
var d = 45084;

var x =

 Advanced Operators

 Advanced Operators

Some advanced operators can be used, such as:

	Modulus (division remainder): x = y % 2

	Increment: Given a = 5
	c = a++, Results: c = 5 and a = 6

	c = ++a, Results: c = 6 and a = 6

	Decrement: Given a = 5
	c = a--, Results: c = 5 and a = 4

	c = --a, Results: c = 4 and a = 4

 Exercise

Define a variable `c` as the modulus of the decremented value of `x` by 3.

 var x = 10;

var c =

 Strings

 Strings

JavaScript strings share many similarities with string implementations from other high-level languages. They represent text based messages and data.

In this course we will cover the basics. How to create new strings and perform common operations on them.

Here is an example of a string:

"Hello World"

 Creation

 Creation

You can define strings in JavaScript by enclosing the text in single quotes or double quotes:

// Single quotes can be used
var str = 'Our lovely string';

// Double quotes as well
var otherStr = "Another nice string";

In Javascript, Strings can contain UTF-8 characters:

"中文 español English हिन्दी العربية português বাংলা русский 日本語 ਪੰਜਾਬੀ 한국어";

Note: Strings can not be subtracted, multiplied or divided.

 Exercise

Create a variable named `str` set to the value `"abc"`.

 Concatenation

 Concatenation

Concatenation involves adding two or more strings together, creating a larger string containing the combined data of those original strings. This is done in JavaScript using the + operator.

var bigStr = 'Hi ' + 'JS strings are nice ' + 'and ' + 'easy to add';

 Exercise

Add up the different names so that the `fullName` variable contains John's complete name.

 var firstName = "John";
var lastName = "Smith";

var fullName =

 Length

 Length

It's easy in Javascript to know how many characters are in string using the property .length.

// Just use the property .length
var size = 'Our lovely string'.length;

Note: Strings can not be substracted, multiplied or divided.

 Exercise

Store in the variable named `size` the length of `str`.

 var str = "Hello World";

var size =

 Conditional Logic

 Conditional Logic

A condition is a test for something. Conditions are very important for programming, in several ways:

First of all conditions can be used to ensure that your program works, regardless of what data you throw at it for processing. If you blindly trust data, you’ll get into trouble and your programs will fail. If you test that the thing you want to do is possible and has all the required information in the right format, that won’t happen, and your program will be a lot more stable. Taking such precautions is also known as programming defensively.

The other thing conditions can do for you is allow for branching. You might have encountered branching diagrams before, for example when filling out a form. Basically, this refers to executing different “branches” (parts) of code, depending on if the condition is met or not.

In this chapter, we'll learn the base of conditional logic in Javascript.

 If

 Condition If

The easiest condition is an if statement and its syntax is if(condition){ do this … }. The condition has to be true for the code inside the curly braces to be executed. You can for example test a string and set the value of another string dependent on its value:

var country = 'France';
var weather;
var food;
var currency;

if(country === 'England') {
 weather = 'horrible';
 food = 'filling';
 currency = 'pound sterling';
}

if(country === 'France') {
 weather = 'nice';
 food = 'stunning, but hardly ever vegetarian';
 currency = 'funny, small and colourful';
}

if(country === 'Germany') {
 weather = 'average';
 food = 'wurst thing ever';
 currency = 'funny, small and colourful';
}

var message = 'this is ' + country + ', the weather is ' +
 weather + ', the food is ' + food + ' and the ' +
 'currency is ' + currency;

Note: Conditions can also be nested.

 Exercise

Fill up the value of `name` to validate the condition.

 var name =

if (name === "John") {

}

 Else

 Else

There is also an else clause that will be applied when the first condition isn’t true. This is very powerful if you want to react to any value, but single out one in particular for special treatment:

var umbrellaMandatory;

if(country === 'England'){
 umbrellaMandatory = true;
} else {
 umbrellaMandatory = false;
}

The else clause can be joined with another if. Lets remake the example from the previous article:

if(country === 'England') {
 ...
} else if(country === 'France') {
 ...
} else if(country === 'Germany') {
 ...
}

 Exercise

Fill up the value of `name` to validate the `else` condition.

 var name =

if (name === "John") {

} else if (name === "Aaron") {
 // Valid this condition
}

 Comparators

 Comparators

Lets now focus on the conditional part:

if (country === "France") {
 ...
}

The conditional part is the variable country followed by the three equal signs (===). Three equal signs tests if the variable country has both the correct value (France) and also the correct type (String). You can test conditions with double equal signs, too, however a conditional such as if (x == 5) would then return true for both var x = 5; and var x = "5";. Depending on what your program is doing, this could make quite a difference. It is highly recommended as a best practice that you always compare equality with three equal signs (=== and !==) instead of two (== and !=).

Other conditional test:

	x > a: is x bigger than a?

	x < a: is x less than a?

	x <= a: is x less than or equal to a?

	x >=a: is x greater than or equal to a?

	x != a: is x not a?

	x: does x exist?

 Exercise

Add a condition to change the value of `a` to the number 10 if `x` is bigger than 5.

 var x = 6;
var a = 0;

Logical Comparison

In order to avoid the if-else hassle, simple logical comparisons can be utilised.

var topper = (marks > 85) ? "YES" : "NO";

In the above example, ? is a logical operator. The code says that if the value of marks is greater than 85 i.e. marks > 85 , then topper = YES ; otherwise topper = NO . Basically, if the comparison condition proves true, the first argument is accessed and if the comparison condition is false , the second argument is accessed.

 Concatenate

 Concatenate conditions

Furthermore you can concatenate different conditions with "or” or “and” statements, to test whether either statement is true, or both are true, respectively.

In JavaScript “or” is written as || and “and” is written as &&.

Say you want to test if the value of x is between 10 and 20—you could do that with a condition stating:

if(x > 10 && x < 20) {
 ...
}

If you want to make sure that country is either “England” or “Germany” you use:

if(country === 'England' || country === 'Germany') {
 ...
}

Note: Just like operations on numbers, Condtions can be grouped using parenthesis, ex: if ((name === "John" || name === "Jennifer") && country === "France").

 Exercise

Fill up the 2 conditions so that `primaryCategory` equals `"E/J"` only if name equals `"John"` and country is `"England"`, and so that `secondaryCategory` equals `"E|J"` only if name equals `"John"` or country is `"England"`

 var name = "John";
var country = "England";
var primaryCategory, secondaryCategory;

if (/* Fill here */) {
 primaryCategory = "E/J";
}
if (/* Fill here */) {
 secondaryCategory = "E|J";
}

 Arrays

 Arrays

Arrays are a fundamental part of programming. An array is a list of data. We can store a lot of data in one variable, which makes our code more readable and easier to understand. It also makes it much easier to perform functions on related data.

The data in arrays are called elements.

Here is a simple array:

// 1, 1, 2, 3, 5, and 8 are the elements in this array
var numbers = [1, 1, 2, 3, 5, 8];

 Indices

 Indices

So you have your array of data elements, but what if you want to access a specific element? That is where indices come in. An index refers to a spot in the array. indices logically progress one by one, but it should be noted that the first index in an array is 0, as it is in most languages. Brackets [] are used to signify you are referring to an index of an array.

// This is an array of strings
var fruits = ["apple", "banana", "pineapple", "strawberry"];

// We set the variable banana to the value of the second element of
// the fruits array. Remember that indices start at 0, so 1 is the
// second element. Result: banana = "banana"
var banana = fruits[1];

 Exercise

Define the variables using the indices of the array

 var cars = ["Mazda", "Honda", "Chevy", "Ford"]
var honda =
var ford =
var chevy =
var mazda =

 Length

 Length

Arrays have a property called length, and it's pretty much exactly as it sounds, it's the length of the array.

var array = [1 , 2, 3];

// Result: l = 3
var l = array.length;

 Exercise

Define the variable a to be the number value of the length of the array

 var array = [1, 1, 2, 3, 5, 8];
var l = array.length;
var a =

 Loops

 Loops

Loops are repetitive conditions where one variable in the loop changes. Loops are handy, if you want to run the same code over and over again, each time with a different value.

Instead of writing:

doThing(cars[0]);
doThing(cars[1]);
doThing(cars[2]);
doThing(cars[3]);
doThing(cars[4]);

You can write:

for (var i=0; i < cars.length; i++) {
 doThing(cars[i]);
}

 For

 For Loop

The easiest form of a loop is the for statement. This one has a syntax that is similar to an if statement, but with more options:

for(condition; end condition; change){
 // do it, do it now
}

Lets for example see how to execute the same code ten-times using a for loop:

for(var i = 0; i < 10; i = i + 1){
 // do this code ten-times
}

: i = i + 1 can be written i++.

 Exercise

Using a for-loop, create a variable named `message` that equals the concatenation of integers (0, 1, 2, ...) from 0 to 99.

 var message = "";

 While

 While Loop

While Loops repetitively execute a block of code as long as a specified condition is true.

while(condition){
 // do it as long as condition is true
}

For example, the loop in this example will repetitively execute its block of code as long as the variable i is less than 5:

var i = 0, x = "";
while (i < 5) {
 x = x + "The number is " + i;
 i++;
}

The Do/While Loop is a variant of the while loop. This loop will execute the code block once before checking if the condition is true. It then repeats the loop as long as the condition is true:

do {
 // code block to be executed
} while (condition);

Note: Be careful to avoid infinite looping if the condition is always true!

 Exercise

Using a while-loop, create a variable named `message` that equals the concatenation of integers (0, 1, 2, ...) as long as its length (`message.length`) is less than 100.

 var message = "";

 Do...While

 Do...While Loop

The do...while statement creates a loop that executes a specified statement until the test condition evaluates to be false. The condition is evaluated after executing the statement.
Syntax for do... while is

do{
 // statement
}
while(expression) ;

Lets for example see how to print numbers less than 10 using do...while loop:

var i = 0;
do {
 document.write(i + " ");
 i++; // incrementing i by 1
} while (i < 10);

: i = i + 1 can be written i++.

 Exercise

Using a do...while-loop, print numbers between less than 5.

 var i = 0;

 Functions

 Functions

Functions, are one of the most powerful and essential notions in programming.

Functions like mathematical functions perform transformations, they take input values called arguments and return an output value.

 Declare

 Declaring Functions

Functions, like variables, must be declared. Let's declare a function double that accepts an argument called x and returns the double of x :

function double(x) {
 return 2 * x;
}

Note: the function above may be referenced before it has been defined.

Functions are also values in JavaScript; they can be stored in variables (just like numbers, strings, etc ...) and given to other functions as arguments :

var double = function(x) {
 return 2 * x;
};

Note: the function above may not be referenced before it is defined, just like any other variable.

 Exercise

Declare a function named `triple` that takes an argument and returns its triple.

 Higher order

 Higher Order Functions

Higher order functions are functions that manipulate other functions.
For example, a function can take other functions as arguments and/or produce a function as its return value.
Such fancy functional techniques are powerful constructs available to you in JavaScript and other high-level languages like python, lisp, etc.

We will now create two simple functions, add_2 and double, and a higher order function called map. map will accept two arguments, func and list (its declaration will therefore begin map(func,list)), and return an array. func (the first argument) will be a function that will be applied to each of the elements in the array list (the second argument).

// Define two simple functions
var add_2 = function(x) {
 return x + 2;
};
var double = function(x) {
 return 2 * x;
};

// map is cool function that accepts 2 arguments:
// func the function to call
// list a array of values to call func on
var map = function(func, list) {
 var output=[]; // output list
 for(idx in list) {
 output.push(func(list[idx]));
 }
 return output;
}

// We use map to apply a function to an entire list
// of inputs to "map" them to a list of corresponding outputs
map(add_2, [5,6,7]) // => [7, 8, 9]
map(double, [5,6,7]) // => [10, 12, 14]

The functions in the above example are simple. However, when passed as arguments to other functions, they can be composed in unforeseen ways to build more complex functions.

For example, if we notice that we use the invocations map(add_2, ...) and map(double, ...) very often in our code, we could decide we want to create two special-purpose list processing functions that have the desired operation baked into them. Using function composition, we could do this as follows:

process_add_2 = function(list) {
 return map(add_2, list);
}
process_double = function(list) {
 return map(double, list);
}
process_add_2([5,6,7]) // => [7, 8, 9]
process_double([5,6,7]) // => [10, 12, 14]

Now let's create a function called buildProcessor that takes a function func as input
and returns a func-processor, that is, a function that applies func to each input in list.

// a function that generates a list processor that performs
var buildProcessor = function(func) {
 var process_func = function(list) {
 return map(func, list);
 }
 return process_func;
}
// calling buildProcessor returns a function which is called with a list input

// using buildProcessor we could generate the add_2 and double list processors as follows:
process_add_2 = buildProcessor(add_2);
process_double = buildProcessor(double);

process_add_2([5,6,7]) // => [7, 8, 9]
process_double([5,6,7]) // => [10, 12, 14]

Let's look at another example.
We'll create a function called buildMultiplier that takes a number x as input and returns a function that multiplies its argument by x :

var buildMultiplier = function(x) {
 return function(y) {
 return x * y;
 }
}

var double = buildMultiplier(2);
var triple = buildMultiplier(3);

double(3); // => 6
triple(3); // => 9

 Exercise

Define a function named `negate` that takes `add1` as argument and returns a function, that returns the negation of the value returned by `add1`. (Things get a bit more complicated ;))

 var add1 = function (x) {
 return x + 1;
};

var negate = function(func) {
 // TODO
};

// Should return -6
// Because (5+1) * -1 = -6
negate(add1)(5);

 Objects

 Objects

The primitive types of JavaScript are true, false, numbers, strings, null and undefined. Every other value is an object.

In JavaScript objects contain propertyName: propertyValue pairs.

 Creation

 Creation

There are two ways to create an object in JavaScript:

	literal

 var object = {};
 // Yes, simply a pair of curly braces!

 this is the recomended way.

	and object-oriented

 var object = new Object();

 it's almost like Java.

 Properties

 Properties

Object's property is a propertyName: propertyValue pair, where property name can be only a string. If it's not a string, it gets casted into a string. You can specify properties when creating an object or later. There may be zero or more properties separated by commas.

var language = {
 name: 'JavaScript',
 isSupportedByBrowsers: true,
 createdIn: 1995,
 author:{
 firstName: 'Brendan',
 lastName: 'Eich'
 },
 // Yes, objects can be nested!
 getAuthorFullName: function(){
 return this.author.firstName + " " + this.author.lastName;
 }
 // Yes, functions can be values too!
};

The following code demonstates how to get a property's value.

var variable = language.name;
 // variable now contains "JavaScript" string.
 variable = language['name'];
 // The lines above do the same thing. The difference is that the second one lets you use litteraly any string as a property name, but it's less readable.
 variable = language.newProperty;
 // variable is now undefined, because we have not assigned this property yet.

The following example shows how to add a new property or change an existing one.

language.newProperty = 'new value';
 // Now the object has a new property. If the property already exists, its value will be replaced.
language['newProperty'] = 'changed value';
 // Once again, you can access properties both ways. The first one (dot notation) is recomended.

 Mutable

 Mutable

The difference between objects and primitive values is that we can change objects, whereas primitive values are immutable.

var myPrimitive = "first value";
 myPrimitive = "another value";
 // myPrimitive now points to another string.
var myObject = { key: "first value"};
 myObject.key = "another value";
 // myObject points to the same object.

 Reference

 Reference

Objects are never copied. They are passed around by reference.

// Imagine I had a pizza
var myPizza = {slices: 5};
 // And I shared it with You
var yourPizza = myPizza;
 // I eat another slice
myPizza.slices = myPizza.slices - 1;
var numberOfSlicesLeft = yourPizza.slices;
 // Now We have 4 slices because myPizza and yourPizza
 // reference to the same pizza object.
var a = {}, b = {}, c = {};
 // a, b, and c each refer to a
 // different empty object
a = b = c = {};
 // a, b, and c all refer to
 // the same empty object

 Prototype

 Prototype

Every object is linked to a prototype object from which it inherits properties.

All objects created from object literals ({}) are automatically linked to Object.prototype, which is an object that comes standard with JavaScript.

When a JavaScript interpreter (a module in your browser) tries to find a property, which You want to retrieve, like in the following code:

var adult = {age: 26},
 retrievedProperty = adult.age;
 // The line above

First, the interpreter looks through every property the object itself has. For example, adult has only one own property — age. But besides that one it actually has a few more properties, which were inherited from Object.prototype.

var stringRepresentation = adult.toString();
 // the variable has value of '[object Object]'

toString is an Object.prototype's property, which was inherited. It has a value of a function, which returns a string representation of the object. If you want it to return a more meaningful representation, then you can override it. Simply add a new property to the adult object.

adult.toString = function(){
 return "I'm "+this.age;
}

If you call the toString function now, the interpreter will find the new property in the object itself and stop.

Thus the interpreter retrieves the first property it will find on the way from the object itself and further through its prototype.

To set your own object as a prototype instead of the default Object.prototype, you can invoke Object.create as follows:

var child = Object.create(adult);
 /* This way of creating objects lets us easily replace the default Object.prototype with the one we want. In this case, the child's prototype is the adult object. */
child.age = 8;
 /* Previously, child didn't have its own age property, and the interpreter had to look further to the child's prototype to find it.
 Now, when we set the child's own age, the interpreter will not go further.
 Note: adult's age is still 26. */
var stringRepresentation = child.toString();
 // The value is "I'm 8".
 /* Note: we have not overridden the child's toString property, thus the adult's method will be invoked. If adult did not have toString property, then Object.prototype's toString method would be invoked, and we would get "[object Object]" instead of "I'm 8" */

child's prototype is adult, whose prototype is Object.prototype. This sequence of prototypes is called prototype chain.

 Delete

 Delete

delete can be used to remove a property from an object. It will remove a property from the
object if it has one. It will not look further in the prototype chain.
Removing a property from an object may allow a property from the prototype chain to shine through:

var adult = {age:26},
 child = Object.create(adult);
 child.age = 8;

delete child.age;
 /* Remove age property from child, revealing the age of the prototype, because then it is not overriden. */
var prototypeAge = child.age;
 // 26, because child does not have its own age property.

 Enumeration

 Enumeration

The for in statement can loop over all of the property names in an object. The enumeration will include functions and prototype properties.

var fruit = {
 apple: 2,
 orange:5,
 pear:1
},
sentence = 'I have ',
quantity;
for (kind in fruit){
 quantity = fruit[kind];
 sentence += quantity+' '+kind+
 (quantity===1?'':'s')+
 ', ';
}
 // The following line removes the trailing coma.
sentence = sentence.substr(0,sentence.length-2)+'.';
 // I have 2 apples, 5 oranges, 1 pear.

 Global footprint

 Global footprint

If you are developing a module, which might be running on a web page, which also runs other modules, then you must beware the variable name overlapping.

Suppose we are developing a counter module:

var myCounter = {
 number : 0,
 plusPlus : function(){
 this.number : this.number + 1;
 },
 isGreaterThanTen : function(){
 return this.number > 10;
 }
}

 this technique is often used with closures, to make the internal state immutable from the outside.

The module now takes only one variable name — myCounter. If any other module on the page makes use of such names like number or isGreaterThanTen then it's perfectly safe, because we will not override each others values;

 OpenLayers

 OpenLayers Workshop

Welcome to the OpenLayers 3 Workshop. This workshop is designed to give you a comprehensive overview of OpenLayers as a web mapping solution.

Setup

These instructions assume that you are starting with an openlayers-workshop.zip archive from the latest workshop release. In addition, you'll need Node installed to run a development server for the OpenLayers library.

After extracting the zip, change into the openlayers-workshop directory and install some additional dependencies:

npm install

Now you're ready to start the workshop server. This serves up the workshop documentation in addition to providing a debug loader for the OpenLayers library.

npm start

This will start a development server where you can read the workshop documentation and work through the exercises: http://terrestris.github.io/momo3-ws/.

Overview

This workshop is presented as a set of modules. In each module you will perform a set of tasks designed to achieve a specific goal for that module. Each module builds upon lessons learned in previous modules and is designed to iteratively build up your knowledge base.

The following modules will be covered in this workshop:

	Basics - Learn how to add a map to a webpage with OpenLayers.

	Layers and Sources - Learn about layers and sources.

	Controls and Interactions - Learn about using map controls and interactions.

	Vector Topics - Explore vector layers in depth.

	Custom Builds - Create custom builds.

 Basics

 Basics

	Creating a map

	Dissecting your map

	Useful resources

 Creating a map

 Creating a Map

In OpenLayers, a map is a collection of layers and various interactions and controls for dealing with user interaction. A map is generated with three basic ingredients: markup, style declarations, and initialization code.

Working Example

Let's take a look at a fully working example of an OpenLayers 3 map.

<!doctype html>
<html lang="en">
 <head>
 <link rel="stylesheet" href="/ol.css" type="text/css">
 <style>
 #map {
 height: 256px;
 width: 512px;
 }
 </style>
 <title>OpenLayers 3 example</title>
 <script src="/loader.js" type="text/javascript"></script>
 </head>
 <body>
 <h1>My Map</h1>
 <div id="map"></div>
 <script type="text/javascript">
 var map = new ol.Map({
 target: 'map',
 layers: [
 new ol.layer.Tile({
 title: 'Global Imagery',
 source: new ol.source.TileWMS({
 url: 'http://demo.opengeo.org/geoserver/wms',
 params: {LAYERS: 'nasa:bluemarble', VERSION: '1.1.1'}
 })
 })
],
 view: new ol.View({
 projection: 'EPSG:4326',
 center: [0, 0],
 zoom: 0,
 maxResolution: 0.703125
 })
 });
 </script>
 </body>
</html>

Tasks

	Make sure you've completed the setup instructions to install dependencies and get the debug server running.

	Copy the text above into a new file called map.html, and save it in the root of the workshop directory.

	Open the working map in your web browser: http://terrestris.github.io/momo3-ws//map.html

[image: A working map displaying imagery of the world]A working map displaying imagery of the world
Having successfully created our first map, we'll continue by looking more closely at the parts.

 Dissecting your map

 Dissecting Your Map

As demonstrated in the previous section, a map is generated by bringing together markup, style declarations, and initialization code. We'll look at each of these parts in a bit more detail.

Map Markup

The markup for the map in the previous example generates a single document element:

<div id="map"></div>

This <div> element will serve as the container for our map viewport. Here we use a <div> element, but the container for the viewport can be any block-level element.

In this case, we give the container an id attribute so we can reference it as the target of our map.

Map Style

OpenLayers comes with a default stylesheet that specifies how map-related elements should be styled. We've explicitly included this stylesheet in the map.html page (<link rel="stylesheet" href="/ol.css" type="text/css">).

OpenLayers doesn't make any guesses about the size of your map. Because of this, following the default stylesheet, we need to include at least one custom style declaration to give the map some room on the page.

<link rel="stylesheet" href="/ol.css" type="text/css">
 <style>
 #map {
 height: 256px;
 width: 512px;
 }
 </style>

In this case, we're using the map container's id value as a selector, and we specify the width (512px) and the height (256px) for the map container.

The style declarations are directly included in the <head> of our document. In most cases, your map related style declarations will be a part of a larger website theme linked in external stylesheets.

Map Initialization

The next step in generating your map is to include some initialization code. In our case, we have included a <script> element at the bottom of our document <body> to do the work:

<script>
 var map = new ol.Map({
 target: 'map',
 layers: [
 new ol.layer.Tile({
 source: new ol.source.TileWMS({
 url: 'http://demo.opengeo.org/geoserver/wms',
 params: {LAYERS: 'nasa:bluemarble', VERSION: '1.1.1'}
 })
 })
],
 view: new ol.View({
 projection: 'EPSG:4326',
 center: [0, 0],
 zoom: 0,
 maxResolution: 0.703125
 })
 });
 </script>

The order of these steps is important. Before our custom script can be executed, the OpenLayers library must be loaded. In our example, the OpenLayers library is loaded in the <head> of our document with <script src="/loader.js"></script>.

Similarly, our custom map initialization code (above) cannot run until the document element that serves as the viewport container, in this case <div id="map"></div>, is ready. By including the initialization code at the end of the document <body>, we ensure that the library is loaded and the viewport container is ready before generating our map.

Let's look in more detail at what the map initialization script is doing. Our script creates a new ol.Map object with a few config options:

target: 'map'

We use the viewport container's id attribute value to tell the map constructor where to render the map. In this case, we pass the string value "map" as the target to the map constructor. This syntax is a shortcut for convenience. We could be more explicit and provide a direct reference to the element (e.g. document.getElementById("map")).

The layers config creates a layer to be displayed in our map:

layers: [
 new ol.layer.Tile({
 source: new ol.source.TileWMS({
 url: 'http://demo.opengeo.org/geoserver/wms',
 params: {LAYERS: 'nasa:bluemarble', VERSION: '1.1.1'}
 })
 })
],

Don't worry about the syntax here if this part is new to you. Layer creation will be covered in another module. The important part to understand is that our map view is a collection of layers. In order to see a map, we need to include at least one layer.

The final step is defining the view. We specify a projection, a center and a zoom level. We also specify a maxResolution to make sure we don't request bounding boxes that GeoWebCache cannot handle.

view: new ol.View({
 projection: 'EPSG:4326',
 center: [0, 0],
 zoom: 0,
 maxResolution: 0.703125
 })

You've successfully dissected your first map! Next let's learn more about developing with OpenLayers.

 Resources

 OpenLayers Resources

The OpenLayers library contains a wealth of functionality. Though the developers have worked hard to provide examples of that functionality and have organized the code in a way that allows other experienced developers to find their way around, many users find it a challenge to get started from scratch.

Learn by Example

New users will most likely find diving into the OpenLayer's example code and experimenting with the library's possible functionality the most useful way to begin.

	http://openlayers.org/en/master/examples/

Browse the Documentation

For further information on specific topics, browse the growing collection of OpenLayers documentation.

	http://openlayers.org/en/master/doc/quickstart.html

	http://openlayers.org/en/master/doc/tutorials

Find the API Reference

After understanding the basic components that make-up and control a map, search the API reference documentation for details on method signatures and object properties. If you only want to see the stable part of the API, make sure to check the Stable Only checkbox.

	http://openlayers.org/en/master/apidoc/

Join the Community

OpenLayers is supported and maintained by a community of developers and users like you. Whether you have questions to ask or code to contribute, you can get involved by using the openlayers-3 tag on StackOverflow for usage questions or signing up for the developers mailing list.

	http://stackoverflow.com/questions/tagged/openlayers-3

	https://groups.google.com/forum/#!forum/ol3-dev

Reporting issues

For reporting issues it is important to understand the several flavours in which the OpenLayers library is distributed:

	ol.js - the script which is built using the Closure Compiler in advanced mode (not human readable)

	ol-debug.js - human readable version to be used during development

When you encounter an issue, it is important to report the issue using ol-debug.js. Also include the full stack trace which you can find using Web Developer tools such as Chrome's Developer Tools. To test this out we are going to make a mistake in map.html by changing ol.layer.Tile into ol.layer.Image. The error you will see is: Uncaught TypeError: undefined is not a function. If you report this to the mailing list, nobody will know what it means. So first, we are going to change the script tag which points to ol.js to point to ol-debug.js instead. Reload the page. The debugger will now stop on the error, and we can see the full stack trace.

[image: At a breakpoint in the debugger]At a breakpoint in the debugger

 Layers and Sources

 Layers and Sources

	WMS sources

	Tiled sources

	Proprietary tile providers

	Vector data

	Image vector source

 WMS sources

 Web Map Service Layers

When you add a layer to your map, the layer's source is typically responsible for fetching the data to be displayed. The data requested can be either raster or vector data. You can think of raster data as information rendered as an image on the server side. Vector data is delivered as structured information from the server and may be rendered for display on the client (your browser).

There are many different types of services that provide raster map data. This section deals with providers that conform with the OGC (Open Geospatial Consortium, Inc.) Web Map Service (WMS) specification.

Creating a Layer

We'll start with a fully working map example and modify the layers to get an
understanding of how they work.

Let's take a look at the following code:

<!doctype html>
<html lang="en">
 <head>
 <link rel="stylesheet" href="/ol.css" type="text/css">
 <style>
 #map {
 height: 256px;
 width: 512px;
 }
 </style>
 <script src="/loader.js" type="text/javascript"></script>
 <title>OpenLayers 3 example</title>
 </head>
 <body>
 <h1>My Map</h1>
 <div id="map"></div>
 <script type="text/javascript">
 var map = new ol.Map({
 target: 'map',
 layers: [
 new ol.layer.Tile({
 title: 'Global Imagery',
 source: new ol.source.TileWMS({
 url: 'http://demo.opengeo.org/geoserver/wms',
 params: {LAYERS: 'nasa:bluemarble', VERSION: '1.1.1'}
 })
 })
],
 view: new ol.View({
 projection: 'EPSG:4326',
 center: [0, 0],
 zoom: 0,
 maxResolution: 0.703125
 })
 });
 </script>
 </body>
</html>

Tasks

	If you haven't already done so, save the text above as map.html in the root of your workshop directory.

	Open the page in your browser to confirm things work: http://terrestris.github.io/momo3-ws//map.html

The ol.layer.Tile Constructor

The ol.layer.Tile constructor gets an object literal of type olx.layer.TileOptions see: http://openlayers.org/en/master/apidoc/ol.layer.Tile.html
In this case we are providing the source key of the options with an ol.source.TileWMS.
A human-readable title for the layer can be provided with the title key, but basically any arbitrary name for the key can be used here.
In OpenLayers 3 there is a separation between layers and sources, whereas in OpenLayers 2 this was all part of the layer.

ol.layer.Tile represents a regular grid of images, ol.layer.Image represents a single image. Depending on the layer type, you would use a different source (ol.source.TileWMS versus ol.source.ImageWMS) as well.

The ol.source.TileWMS Constructor

The ol.source.TileWMS constructor has a single argument which is defined by: http://openlayers.org/en/master/apidoc/ol.source.TileWMS.html.
The url is the online resource of the WMS service, and params is an object literal with the parameter names and their values. Since the default WMS version is 1.3.0 now in OpenLayers, you might need to provide a lower version in the params if your WMS does not support WMS 1.3.0.

layers: [
 new ol.layer.Tile({
 title: 'Global Imagery',
 source: new ol.source.TileWMS({
 url: 'http://demo.opengeo.org/geoserver/wms',
 params: {LAYERS: 'nasa:bluemarble', VERSION: '1.1.1'}
 })
 })
]

Tasks

	This same WMS offers a Natural Earth layer named 'ne:NE1_HR_LC_SR_W_DR'. Change the value of the LAYERS parameter from 'nasa:bluemarble' to 'ne:NE1_HR_LC_SR_W_DR'.
 Your revised ol.layer.Tile Constructor should look like:

 new ol.layer.Tile({
 title: 'Global Imagery',
 source: new ol.source.TileWMS({
 url: 'http://demo.opengeo.org/geoserver/wms',
 params: {LAYERS: 'ne:NE1_HR_LC_SR_W_DR', VERSION: '1.1.1'}
 })
 })

	Change your layer and source to have a single image instead of tiles. Look at the following API doc pages for hints: http://openlayers.org/en/master/apidoc/ol.layer.Image.html and http://openlayers.org/en/master/apidoc/ol.source.ImageWMS.html. Use the Network tab of your browser's developer tools to make sure a single image is requested and not 256x256 pixel tiles.
[image: A WMS as an image source]

Having worked with dynamically rendered data from a Web Map Service, let's move
on to learn about cached tile services.

 Tiled sources

 Cached Tiles

By default, the Tile layer makes requests for 256 x 256 (pixel) images to fill your map viewport and beyond. As you pan and zoom around your map, more requests for images go out to fill the areas you haven't yet visited. While your browser will cache some requested images, a lot of processing work is typically required for the server to dynamically render images.

Since tiled layers make requests for images on a regular grid, it is possible for the server to cache these image requests and return the cached result next time you (or someone else) visits the same area - resulting in better performance all around.

ol.source.XYZ

The Web Map Service specification allows a lot of flexibility in terms of what a client can request. Without constraints, this makes caching difficult or impossible in practice.

At the opposite extreme, a service might offer tiles only at a fixed set of zoom levels and only for a regular grid. These can be generalized as tiled layers with an XYZ source - you can consider X and Y to indicate the column and row of the grid and Z to represent the zoom level.

ol.source.OSM

The OpenStreetMap (OSM) project is an effort to collect and make freely available map data for the world. OSM provides a few different renderings of their data as cached tile sets. These renderings conform to the basic XYZ grid arrangement and can be used in an OpenLayers map. The ol.source.OSM layer source accesses OpenStreetMap tiles.

Tasks

	Open the map.html file from the previous section in a text editor and change the map initialization code to look like the following: <script>
 var map = new ol.Map({
 target: 'map',
 layers: [
 new ol.layer.Tile({
 source: new ol.source.OSM()
 })
],
 view: new ol.View({
 center: ol.proj.fromLonLat([126.97, 37.56]),
 zoom: 9
 }),
 controls: ol.control.defaults({
 attributionOptions: {
 collapsible: false
 }
 })
 });
 </script>

	In the <head> of the same document, add a few style declarations for the layer attribution.<style>
 #map {
 width: 512px;
 height: 256px;
 }
 .ol-attribution a {
 color: black;
 }
 </style>

	Save your changes, and refresh the page in your browser: http://terrestris.github.io/momo3-ws//map.html
[image: A tiled layer with an OSM source]

A Closer Look

Projections

Review the view definition of the map:

view: new ol.View({
 center: ol.proj.fromLonLat([126.97, 37.56]),
 zoom: 9
 })

Geospatial data can come in any number of coordinate reference systems. One data set might use geographic coordinates (longitude and latitude) in degrees, and another might have coordinates in a local projection with units in meters. A full discussion of coordinate reference systems is beyond the scope of this module, but it is important to understand the basic concept.

OpenLayers 3 needs to know the coordinate system for your data. Internally, this is represented with an ol.proj.Projection object but strings can also be supplied.

The OpenStreetMap tiles that we will be using are in a Mercator projection. Because of this, we need to set the initial center using Mercator coordinates. Since it is relatively easy to find out the coordinates for a place of interest in geographic coordinates, we use the ol.proj.fromLonLat method to turn geographic coordinates ('EPSG:4326') into Mercator coordinates ('EPSG:3857').

Alternative Projections

OpenLayers 3 includes transforms between Geographic ('EPSG:4326') and Web Mercator ('EPSG:3857') coordinate reference systems. Because of this, we can use the ol.proj.fromLonLat function above without any extra work. If you want to work with data in a different projection, you need to include some additional information before using the ol.proj.* functions.

For example, if you wanted to work with data in the 'EPSG:21781' coordinate reference system, you would include the following two script tags in your page:

<script src="http://cdnjs.cloudflare.com/ajax/libs/proj4js/2.3.6/proj4.js" type="text/javascript"></script>
 <script src="http://epsg.io/21781-1753.js" type="text/javascript"></script>

Then in your application code, you could register this projection and set its validity extent as follows:

// This creates a projection object for the EPSG:21781 projection
 // and sets a "validity extent" in that projection object.
 var projection = ol.proj.get('EPSG:21781');
 projection.setExtent([485869.5728, 76443.1884, 837076.5648, 299941.7864]);

The extent information can be looked up at http://epsg.io/, using the EPSG code.

Layer Creation

layers: [
 new ol.layer.Tile({
 source: new ol.source.OSM()
 })
],

As before, we create a layer and add it to the layers array of our map config object. This time, we accept all the default options for the source.

Style

.ol-attribution a {
 color: black;
 }

A treatment of map controls is also outside of the scope of this module, but these style declarations give you a sneak preview. By default, an ol.control.Attribution control is added to all maps. This lets layer sources display attribution information in the map viewport. The declarations above alter the style of this attribution for our map (notice the Copyright line at the bottom right of the map).

Attribution Control Configuration

By default the ol.control.Attribution adds an i (information) button that can be pressed to actually displays the attribution information. To comply to OpenStreetMap's Terms Of Use, and always display the OpenStreetMap attribution information, the following is used in the options object passed to the ol.Map constructor:

controls: ol.control.defaults({
 attributionOptions: {
 collapsible: false
 }
 })

This removes the i button, and makes the attribution information always visible.

Having mastered layers with publicly available cached tile sets, let's move on to working with proprietary raster layers.

 Proprietary tile providers

 Proprietary Raster Layers

In previous sections, we displayed layers based on a standards compliant WMS (OGC Web Map Service) and a custom tile cache. Online mapping (or at least the tiled map client) was largely popularized by the availability of proprietary map tile services. OpenLayers provides layer types that work with these proprietary services through their APIs.

In this section, we'll build on the example developed in the previous section by adding a layer using tiles from Bing.

Bing!

Let's add a Bing layer.

Tasks

	In your map.html file, find where the OSM (OpenStreetMap) source is configured and change it into an ol.source.BingMaps

 source: new ol.source.BingMaps({
 imagerySet: 'Road',
 key: '<Your Bing Maps Key Here>'
 })

 Note - The Bing tiles API requires that you register for an API key to use with your mapping application. The example here uses an API key that you should not use in production. To use the Bing layer in production, register for an API key at https://www.bingmapsportal.com/.

	Save your changes and reload map.html in your browser: http://terrestris.github.io/momo3-ws//map.html
[image: A map with tiles from a Bing Maps source]

Complete Working Example

Your revised map.html file should look something like this:

<!doctype html>
<html lang="en">
 <head>
 <link rel="stylesheet" href="/ol.css" type="text/css">
 <style>
 #map {
 height: 256px;
 width: 512px;
 }
 .ol-attribution a {
 color: black;
 }
 </style>
 <script src="/loader.js" type="text/javascript"></script>
 <title>OpenLayers 3 example</title>
 </head>
 <body>
 <h1>My Map</h1>
 <div id="map" class="map"></div>
 <script type="text/javascript">
 var map = new ol.Map({
 target: 'map',
 layers: [
 new ol.layer.Tile({
 source: new ol.source.BingMaps({
 imagerySet: 'Road',
 key: '<Your Bing Maps Key Here>'
 })
 })
],
 view: new ol.View({
 center: ol.proj.fromLonLat([126.97, 37.56]),
 zoom: 9
 })
 });
 </script>
 </body>
</html>

 Vector data

 Vector Layers

Vector Layers are represented by ol.layer.Vector and handle the client-side display of vector data. Currently OpenLayers 3 supports full vector rendering in the Canvas renderer, but only point geometries in the WebGL renderer.

Rendering Features Client-Side

Let's go back to the WMS example to get a basic world map. We'll add some feature data on top of this in a vector layer.

<!doctype html>
<html lang="en">
 <head>
 <link rel="stylesheet" href="/ol.css" type="text/css">
 <style>
 #map {
 height: 256px;
 width: 512px;
 }
 </style>
 <title>OpenLayers 3 example</title>
 <script src="/loader.js" type="text/javascript"></script>
 </head>
 <body>
 <h1>My Map</h1>
 <div id="map"></div>
 <script type="text/javascript">
 var map = new ol.Map({
 target: 'map',
 layers: [
 new ol.layer.Tile({
 title: 'Global Imagery',
 source: new ol.source.TileWMS({
 url: 'http://demo.opengeo.org/geoserver/wms',
 params: {LAYERS: 'nasa:bluemarble', VERSION: '1.1.1'}
 })
 })
],
 view: new ol.View({
 projection: 'EPSG:4326',
 center: [0, 0],
 zoom: 0,
 maxResolution: 0.703125
 })
 });
 </script>
 </body>
</html>

Tasks

	Open map.html in your text editor and copy in the contents of the initial WMS example. Save your changes and confirm that things look good in your browser: http://terrestris.github.io/momo3-ws//map.html

	In your map initialization code add another layer after the Tile layer (paste the following). This adds a new vector layer to your map that requests a set of features stored in GeoJSON:

 new ol.layer.Vector({
 title: 'Earthquakes',
 source: new ol.source.Vector({
 url: '/data/layers/7day-M2.5.json',
 format: new ol.format.GeoJSON()
 }),
 style: new ol.style.Style({
 image: new ol.style.Circle({
 radius: 3,
 fill: new ol.style.Fill({color: 'white'})
 })
 })
 })

 [image: Earthquake locations]

A Closer Look

Let's examine that vector layer creation to get an idea of what is going on.

new ol.layer.Vector({
 title: 'Earthquakes',
 source: new ol.source.Vector({
 url: '/data/layers/7day-M2.5.json',
 format: new ol.format.GeoJSON()
 }),
 style: new ol.style.Style({
 image: new ol.style.Circle({
 radius: 3,
 fill: new ol.style.Fill({color: 'white'})
 })
 })
})

The layer is given the title 'Earthquakes' and some custom options. In the options object, we've included a source of type ol.source.Vector which points to a url. We've given the source a format that will be used for parsing the data.

Note - In the case where you want to style the features based on an attribute, you would use a style function instead of an ol.style.Style for the style config option of ol.layer.Vector.

Bonus Tasks

	The white circles on the map represent ol.Feature objects on your ol.layer.Vector layer. Each of these features has attribute data with title and summary properties. Register a 'singleclick' listener on your map that calls forEachFeatureAtPixel on the map, and displays earthquake information below the map viewport.

	The data for the vector layer comes from an earthquake feed published by the USGS (http://earthquake.usgs.gov/earthquakes/catalogs/). See if you can find additional data with spatial information in a format supported by OpenLayers 3. If you save another document representing spatial data in your data directory, you should be able to view it in a vector layer on your map.

Solutions

As a solution to the first bonus task you can add an info div below the map:

<div id="info"></div>

and add the following JavaScript code to display the title of the clicked
feature:

map.on('singleclick', function(e) {
 var feature = map.forEachFeatureAtPixel(e.pixel, function(feature) {
 return feature;
 });
 var infoElement = document.getElementById('info');
 infoElement.innerHTML = feature ? feature.get('title') : '';
});

 Image vector source

 Image Vector

In the previous example using an ol.layer.Vector you can see that the features are re-rendered continuously during animated zooming (the size of the point symbolizers remains fixed). With a vector layer, OpenLayers will re-render the source data with each animation frame. This provides consistent rendering of line strokes, point symbolizers, and labels with changes in the view resolution.

An alternative rendering strategy is to avoid re-rendering data during view transitions and instead reposition and scale the rendered output from the previous view state. This can be accomplished by using an ol.layer.Image with an ol.source.ImageVector. With this combination, "snapshots" of your data are rendered when the view is not animating, and these snapshots are reused during view transitions.

The example below uses an ol.layer.Image with an ol.source.ImageVector. Though this example only renders a small quantity of data, this combination would be appropriate for applications that render large quantities of relatively static data.

ol.source.ImageVector

Let's go back to the vector layer example to get earthquake data on top of a world map.

<!doctype html>
<html lang="en">
 <head>
 <link rel="stylesheet" href="/ol.css" type="text/css">
 <style>
 #map {
 height: 256px;
 width: 512px;
 }
 </style>
 <title>OpenLayers 3 example</title>
 <script src="/loader.js" type="text/javascript"></script>
 </head>
 <body>
 <h1>My Map</h1>
 <div id="map"></div>
 <script type="text/javascript">
 var map = new ol.Map({
 target: 'map',
 layers: [
 new ol.layer.Tile({
 title: 'Global Imagery',
 source: new ol.source.TileWMS({
 url: 'http://demo.opengeo.org/geoserver/wms',
 params: {LAYERS: 'nasa:bluemarble', VERSION: '1.1.1'}
 })
 }),
 new ol.layer.Vector({
 title: 'Earthquakes',
 source: new ol.source.Vector({
 url: '/data/layers/7day-M2.5.json',
 format: new ol.format.GeoJSON()
 }),
 style: new ol.style.Style({
 image: new ol.style.Circle({
 radius: 3,
 fill: new ol.style.Fill({color: 'white'})
 })
 })
 })
],
 view: new ol.View({
 projection: 'EPSG:4326',
 center: [0, 0],
 zoom: 0,
 maxResolution: 0.703125
 })
 });
 </script>
 </body>
</html>

Tasks

	Open map.html in your text editor and copy in the contents of the vector example from above. Save your changes and confirm that things look good in your browser: http://terrestris.github.io/momo3-ws//map.html

	Change the vector layer into: new ol.layer.Image({
 title: 'Earthquakes',
 source: new ol.source.ImageVector({
 source: new ol.source.Vector({
 url: '/data/layers/7day-M2.5.json',
 format: new ol.format.GeoJSON()
 }),
 style: new ol.style.Style({
 image: new ol.style.Circle({
 radius: 3,
 fill: new ol.style.Fill({color: 'white'})
 })
 })
 })
 })

	Reload http://terrestris.github.io/momo3-ws//map.html in the browser
Note - You will see the same vector data but depicted as an image. This will still enable things like feature detection, but the vector data will be less sharp. So this is essentially a trade-off between performance and quality.

A Closer Look

Let's examine the layer creation to get an idea of what is going on.

new ol.layer.Image({
 title: 'Earthquakes',
 source: new ol.source.ImageVector({
 source: new ol.source.Vector({
 url: '/data/layers/7day-M2.5.json',
 format: new ol.format.GeoJSON()
 }),
 style: new ol.style.Style({
 image: new ol.style.Circle({
 radius: 3,
 fill: new ol.style.Fill({color: 'white'})
 })
 })
 })
 })

We are using an ol.layer.Image instead of an ol.layer.Vector. However, we can still use vector data here through ol.source.ImageVector that connects to our original ol.source.Vector vector source. The style is provided as config of ol.source.ImageVector and not on the layer.

Bonus Tasks

	Verify that feature detection still works by registering a 'singleclick' listener on your map that calls forEachFeatureAtPixel on the map, and displays earthquake information below the map viewport.

 Controls

 Controls and interactions

	Scale line control

	Select interaction

	Draw interaction

	Modify interaction

 Scale line control

 Displaying a Scale Line

Another typical widget to display on maps is a scale bar. OpenLayers 3 provides an ol.control.ScaleLine for just this.

Creating a ScaleLine Control

Tasks

	Open the map.html in your text editor.

	Somewhere in the map config, add the following code to create a new scale line control for your map: controls: ol.control.defaults().extend([
 new ol.control.ScaleLine()
]),

	Save your changes and open map.html in your browser: http://terrestris.github.io/momo3-ws//map.html
 [image: A default scale bar in the bottom left-hand corner]

Moving the ScaleLine Control

You may find the scale bar a bit hard to read over the imagery. There are a few approaches to take in order to improve scale visibility. If you want to keep the control inside the map viewport, you can add some style declarations within the CSS of your document. To test this out, you can include a background color and padding to the scale bar with something like the following:

.ol-scale-line {
 background: black;
 padding: 5px;
 }

However, for the sake of this exercise, let's say you think the map viewport is getting unbearably crowded. To avoid such over-crowding, you can display the scale in a different location. To accomplish this, we need to first create an additional element in our markup and then tell the scale control to render itself within this new element.

Tasks

	Create a new block level element in the <body> of your page. To make this element easy to refer to, we'll give it an id attribute. Insert the following markup somewhere in the <body> of your map.html page. (Placing the scale element right after the map viewport element <div id="map"></div> makes sense.): <div id="scale-line" class="scale-line"></div>

	Now modify the code creating the scale control so that it refers to the scale-line element: controls: ol.control.defaults().extend([
 new ol.control.ScaleLine({className: 'ol-scale-line', target: document.getElementById('scale-line')})
]),

	Save your changes and open map.html in your browser: http://terrestris.github.io/momo3-ws//map.html

	"Fix" the position of the control with, for example, the following CSS rules:.scale-line {
 position: absolute;
 top: 350px;
}
.ol-scale-line {
 position: relative;
 bottom: 0px;
 left: 0px;
}

	Now save your changes and view map.html again in your browser: http://terrestris.github.io/momo3-ws//map.html
[image: A scale line control outside the map viewport]

Note - To create a custom control you can inherit (by using ol.inherits) from ol.control.Control. To see an example of this check out: http://openlayers.org/en/master/examples/custom-controls.html.

 Select interaction

 Selecting Features

As we've seen in the layers module, we can pull features as vectors and draw them on top of a base map. One of the advantages of serving vector data is that users can interact with the data. In this example, we create a vector layer where users can select and view feature information.

The previous example demonstrated the use of an ol.control.Control on the map. Controls have a visual representation on the map or add DOM elements to the document. An ol.interaction.Interaction is responsible for handling user interaction, but typically has no visual representation. This example demonstrates the use of the ol.interaction.Select for interacting with features from vector layers.

Create a Vector Layer and a Select Interaction

Tasks

	Let's start with the vector layer example from a previous section. Open map.html in your text editor and make sure it looks something like the following: <!doctype html>
 <html lang="en">
 <head>
 <link rel="stylesheet" href="/ol.css" type="text/css">
 <style>
 #map {
 height: 256px;
 width: 512px;
 }
 </style>
 <script src="/loader.js" type="text/javascript"></script>
 <title>OpenLayers 3 example</title>
 </head>
 <body>
 <h1>My Map</h1>
 <div id="map"></div>
 <script type="text/javascript">
 var map = new ol.Map({
 interactions: ol.interaction.defaults().extend([
 new ol.interaction.Select({
 style: new ol.style.Style({
 image: new ol.style.Circle({
 radius: 5,
 fill: new ol.style.Fill({
 color: '#FF0000'
 }),
 stroke: new ol.style.Stroke({
 color: '#000000'
 })
 })
 })
 })
]),
 target: 'map',
 layers: [
 new ol.layer.Tile({
 title: 'Global Imagery',
 source: new ol.source.TileWMS({
 url: 'http://demo.opengeo.org/geoserver/wms',
 params: {LAYERS: 'nasa:bluemarble', VERSION: '1.1.1'}
 })
 }),
 new ol.layer.Vector({
 title: 'Earthquakes',
 source: new ol.source.Vector({
 url: '/data/layers/7day-M2.5.json',
 format: new ol.format.GeoJSON()
 }),
 style: new ol.style.Style({
 image: new ol.style.Circle({
 radius: 5,
 fill: new ol.style.Fill({
 color: '#0000FF'
 }),
 stroke: new ol.style.Stroke({
 color: '#000000'
 })
 })
 })
 })
],
 view: new ol.View({
 projection: 'EPSG:4326',
 center: [0, 0],
 zoom: 1
 })
 });
 </script>
 </body>
 </html>

	Save your changes to map.html and open the page in your browser: http://terrestris.github.io/momo3-ws//map.html. To see feature selection in action, use the mouse-click to select an earthquake:
[image: Using an interaction to select features from a vector layer]

 Draw interaction

 Drawing Features

New features can be drawn by using an ol.interaction.Draw. A draw interaction is constructed with a vector source and a geometry type.

Create a Vector Layer and a Draw Interaction

Tasks

	Let's start with the example below. Open map.html in your text editor and make sure it looks something like the following: <!doctype html>
 <html lang="en">
 <head>
 <link rel="stylesheet" href="/ol.css" type="text/css">
 <style>
 #map {
 height: 256px;
 width: 512px;
 }
 </style>
 <script src="/loader.js" type="text/javascript"></script>
 <title>OpenLayers 3 example</title>
 </head>
 <body>
 <h1>My Map</h1>
 <div id="map"></div>
 <script type="text/javascript">
 var source = new ol.source.Vector({
 url: '/data/layers/7day-M2.5.json',
 format: new ol.format.GeoJSON()
 });
 var draw = new ol.interaction.Draw({
 source: source,
 type: 'Point'
 });
 var map = new ol.Map({
 interactions: ol.interaction.defaults().extend([draw]),
 target: 'map',
 layers: [
 new ol.layer.Tile({
 title: 'Global Imagery',
 source: new ol.source.TileWMS({
 url: 'http://demo.opengeo.org/geoserver/wms',
 params: {LAYERS: 'nasa:bluemarble', VERSION: '1.1.1'}
 })
 }),
 new ol.layer.Vector({
 title: 'Earthquakes',
 source: source,
 style: new ol.style.Style({
 image: new ol.style.Circle({
 radius: 5,
 fill: new ol.style.Fill({
 color: '#0000FF'
 }),
 stroke: new ol.style.Stroke({
 color: '#000000'
 })
 })
 })
 })
],
 view: new ol.View({
 projection: 'EPSG:4326',
 center: [0, 0],
 zoom: 1
 })
 });
 </script>
 </body>
 </html>

	Save your changes to map.html and open the page in your browser: http://terrestris.github.io/momo3-ws//map.html. To see drawing of point geometries in action, click in the map to add a new feature:
[image: Using a draw interaction to add features to a vector source]

Bonus Tasks

	Create a listener which gets the new feature's X and Y after it is drawn.

Solutions

Here is a solution for the first bonus task. In it we register an event listener for the drawend event of the ol.interaction.Draw. This method logs the feature's X and Y to the developer console:

draw.on('drawend', function(evt){
 var feature = evt.feature;
 var p = feature.getGeometry();
 console.log(p.getCoordinates());
});

 Modify interaction

 Modifying Features

Modifying features works by using an ol.interaction.Select in combination with an ol.interaction.Modify. They share a common collection (ol.Collection) of features. Features selected with the ol.interaction.Select become candidates for modifications with the ol.interaction.Modify.

Create a Vector Layer and a Modify Interaction

Tasks

	Let's start with the working example. Open map.html in your text editor and make sure it looks something like the following: <!doctype html>
 <html lang="en">
 <head>
 <link rel="stylesheet" href="/ol.css" type="text/css">
 <style>
 #map {
 height: 256px;
 width: 512px;
 }
 </style>
 <script src="/loader.js" type="text/javascript"></script>
 <title>OpenLayers 3 example</title>
 </head>
 <body>
 <h1>My Map</h1>
 <div id="map"></div>
 <script type="text/javascript">
 var source = new ol.source.Vector({
 url: '/data/layers/7day-M2.5.json',
 format: new ol.format.GeoJSON()
 });
 var style = new ol.style.Style({
 image: new ol.style.Circle({
 radius: 7,
 fill: new ol.style.Fill({
 color: [0, 153, 255, 1]
 }),
 stroke: new ol.style.Stroke({
 color: [255, 255, 255, 0.75],
 width: 1.5
 })
 }),
 zIndex: 100000
 });
 var select = new ol.interaction.Select({style: style});
 var modify = new ol.interaction.Modify({
 features: select.getFeatures()
 });
 var map = new ol.Map({
 interactions: ol.interaction.defaults().extend([select, modify]),
 target: 'map',
 layers: [
 new ol.layer.Tile({
 title: 'Global Imagery',
 source: new ol.source.TileWMS({
 url: 'http://demo.opengeo.org/geoserver/wms',
 params: {LAYERS: 'nasa:bluemarble', VERSION: '1.1.1'}
 })
 }),
 new ol.layer.Vector({
 title: 'Earthquakes',
 source: source,
 style: new ol.style.Style({
 image: new ol.style.Circle({
 radius: 5,
 fill: new ol.style.Fill({
 color: '#0000FF'
 }),
 stroke: new ol.style.Stroke({
 color: '#000000'
 })
 })
 })
 })
],
 view: new ol.View({
 projection: 'EPSG:4326',
 center: [0, 0],
 zoom: 1
 })
 });
 </script>
 </body>
 </html>

	Save your changes to map.html and open the page in your browser: http://terrestris.github.io/momo3-ws//map.html. To see feature modification in action, use the mouse-click to select an earth quake and then drag to move the point.

A Closer Look

Let's examine how modifying features works.

var style = new ol.style.Style({
 image: new ol.style.Circle({
 radius: 7,
 fill: new ol.style.Fill({
 color: [0, 153, 255, 1]
 }),
 stroke: new ol.style.Stroke({
 color: [255, 255, 255, 0.75],
 width: 1.5
 })
 }),
 zIndex: 100000
 });
 var select = new ol.interaction.Select({style: style});
 var modify = new ol.interaction.Modify({
 features: select.getFeatures()
 });

We create 2 interactions, an ol.interaction.Select to select the features before modifying them, and an ol.interaction.Modify to actually modify the geometries. They share the same ol.Collection of features. Features selected using ol.interaction.Modify become candidates for modification with the ol.interaction.Modify. As previously, the ol.interaction.Select is configured with a style object, which effectively defines the style used for drawing selected features. When the user clicks in the map again, the feature will be drawn using the layer's style.

 Vector Topics

 Vector Topics

	An aside on formats

	Styling concepts

	Custom feature styles

 Formats

 Working with Vector Formats

The base ol.layer.Vector constructor provides a fairly flexible layer type. By default, when you create a new vector layer, no assumptions are made about where the features for the layer will come from, since this is the domain of ol.source.Vector. Before getting into styling vector features, this section introduces the basics of vector formats.

ol.format

The ol.format classes in OpenLayers 3 are responsible for parsing data from the server representing vector features. The format turns raw feature data into ol.Feature objects.

Consider the two blocks of data below. Both represent the same ol.Feature object (a point in Barcelona, Spain). The first is serialized as GeoJSON (using the ol.format.GeoJSON parser). The second is serialized as KML (OGC Keyhole Markup Language) (using the ol.format.KML parser).

GeoJSON Example

{
 "type": "Feature",
 "id": "OpenLayers.Feature.Vector_107",
 "properties": {},
 "geometry": {
 "type": "Point",
 "coordinates": [-104.98, 39.76]
 }
}

KML Example

<?xml version="1.0" encoding="utf-8"?>
<kml xmlns="http://earth.google.com/kml/2.2">
 <Placemark>
 <Point>
 <coordinates>-104.98,39.76</coordinates>
 </Point>
 </Placemark>
</kml>

 Styling concepts

 Understanding Style

When styling HTML elements, you might use CSS like the following:

.someClass {
 background-color: blue;
 border-width: 1px;
 border-color: olive;
 }

The .someClass text is a selector (in this case it selects all elements that include the class name 'someClass') and the block that follows is a group of named properties and values, otherwise known as style declarations.

Layer style

A vector layer can have styles. More specifically, a vector layer can be configured with an ol.style.Style object, an array of ol.style.Style objects, or a function that takes an ol.Feature instance and a resolution and returns an array of ol.style.Style objects.

Here's an example of a vector layer configured with a static style:

var layer = new ol.layer.Vector({
 source: new ol.source.Vector(),
 style: new ol.style.Style({
 // ...
 })
 });

And here's an example of a vector layer configured with a style function that applies a style to all features that have an attribute named class with a value of 'someClass':

var layer = new ol.layer.Vector({
 source: new ol.source.Vector(),
 style: function(feature, resolution) {
 if (feature.get('class') === 'someClass') {
 // create styles...
 return styles;
 }
 },
 });

Symbolizers

The equivalent of a declaration block in CSS is a symbolizer in OpenLayers 3 (these are typically instances of ol.style classes). To paint polygon features with a blue background and a 1 pixel wide olive stroke, you would use two symbolizers like the following:

new ol.style.Style({
 fill: new ol.style.Fill({
 color: 'blue'
 }),
 stroke: new ol.style.Stroke({
 color: 'olive',
 width: 1
 })
 });

Depending on the geometry type, different symbolizers can be applied. Lines work like polygons, but they cannot have a fill. Points can be styled with ol.style.Circle or ol.style.Icon. The former is used to render circle shapes, and the latter uses graphics from file (e.g. png images). Here is an example for a style with a circle:

new ol.style.Circle({
 radius: 20,
 fill: new ol.style.Fill({
 color: '#ff9900',
 opacity: 0.6
 }),
 stroke: new ol.style.Stroke({
 color: '#ffcc00',
 opacity: 0.4
 })
 });

ol.style.Style

An ol.style.Style object has 4 keys: fill, image, stroke and text. It also has an optional zIndex property. The style function will return an array of ol.style.Style objects.

If you want all features to be colored red except for those that have a class attribute with the value of "someClass" (and you want those features colored blue with an 1px wide olive stroke), you would create a style function that looked like the following (by the way, it is important to create objects outside of the style function so they can be reused, but for simplicity reasons the objects are created inline in the example below):

var primaryStyles = [
 new ol.style.Style({
 fill: new ol.style.Fill({
 color: 'blue'
 }),
 stroke: new ol.style.Stroke({
 color: 'olive',
 width: 1
 })
 })];
 var otherStyle = [new ol.style.Style({
 fill: new ol.style.Fill({
 color: 'red'
 })
 })
];
 var otherStyles = [
 // define other styles here
]

 layer.setStyle(function(feature, resolution) {
 if (feature.get('class') === 'someClass') {
 return primaryStyles;
 } else {
 return otherStyles;
 }
 });

Note - It is important to create the style arrays outside of the actual style function. The style function is called many times during rendering, and you'll get smoother animation if your style functions don't create a lot of garbage.

A feature also has a style config option that can take a function having only resolution as argument. This makes it possible to style individual features (based on resolution).

Pseudo-classes

CSS allows for pseudo-classes on selectors. These basically limit the application of style declarations based on contexts that are not easily represented in the selector, such as mouse position, neighboring elements, or browser history. In OpenLayers 3, a somewhat similar concept is having a style config option on an ol.interaction.Select.

An example is:

var select = new ol.interaction.Select({
 style: new ol.style.Style({
 fill: new ol.style.Fill({
 color: 'rgba(255,255,255,0.5)'
 })
 })
 });

With the basics of styling under your belt, it's time to move on to styling vector layers.

 Custom styles

 Styling Vector Layers

	We'll start with a working example that displays building footprints in a vector layer. Open your text editor and save the following as map.html in the root of your workshop directory: <!doctype html>
 <html lang="en">
 <head>
 <link rel="stylesheet" href="/ol.css" type="text/css">
 <style>
 #map {
 height: 256px;
 width: 512px;
 }
 </style>
 <title>OpenLayers 3 example</title>
 <script src="/loader.js" type="text/javascript"></script>
 </head>
 <body>
 <h1>My Map</h1>
 <div id="map"></div>
 <script type="text/javascript">
 var map = new ol.Map({
 target: 'map',
 layers: [
 new ol.layer.Tile({
 source: new ol.source.OSM()
 }),
 new ol.layer.Vector({
 title: 'Buildings',
 source: new ol.source.Vector({
 url: '/data/layers/buildings.kml',
 format: new ol.format.KML({
 extractStyles: false
 })
 }),
 style: new ol.style.Style({
 stroke: new ol.style.Stroke({color: 'red', width: 2})
 })
 })
],
 view: new ol.View({
 center: ol.proj.fromLonLat([-122.79264450073244, 42.30975194250527]),
 zoom: 16
 })
 });
 </script>
 </body>
 </html>

	Open this map.html file in your browser to see buildings with a red outline: http://terrestris.github.io/momo3-ws//map.html

	With a basic understanding of styling in OpenLayers, we can create a style function that displays buildings in different colors based on the size of their footprint. In your map initialization code, add the following two styles arrays and replace the style option for the 'Buildings' layer with the style function below:

var defaultStyles = [
 new ol.style.Style({
 fill: new ol.style.Fill({color: 'navy'}),
 stroke: new ol.style.Stroke({color: 'black', width: 1})
 })
];
 var smallStyles = [
 new ol.style.Style({
 fill: new ol.style.Fill({color: 'olive'}),
 stroke: new ol.style.Stroke({color: 'black', width: 1})
 })
];

 function style(feature, resolution) {
 if (feature.get('shape_area') < 3000) {
 return smallStyles;
 } else {
 return defaultStyles;
 }
 }

	Save your changes and open map.html in your browser: http://terrestris.github.io/momo3-ws//map.html
[image: Buildings colored by footprint area]

	Now as a final step, let's add a label to the buildings. For simplicity we're only using a label and a black outline as the style.style: (function() {
 var stroke = new ol.style.Stroke({
 color: 'black'
 });
 var textStroke = new ol.style.Stroke({
 color: '#fff',
 width: 3
 });
 var textFill = new ol.style.Fill({
 color: '#000'
 });
 return function(feature, resolution) {
 return [new ol.style.Style({
 stroke: stroke,
 text: new ol.style.Text({
 font: '12px Calibri,sans-serif',
 text: feature.get('key'),
 fill: textFill,
 stroke: textStroke
 })
 })];
 };
 })()

	Save your changes and open map.html in your browser: http://terrestris.github.io/momo3-ws//map.html
[image: Buildings labeled by the key field]

 Custom Builds

 Custom Builds

	Concepts

	Create a custom build

 Concepts

 Understanding custom builds

OpenLayers 3 is a big library providing a lot of functionality. So it is
unlikely that an application will need and use all the functionality OpenLayers
3 provides. Custom builds (a.k.a. application-specific builds) are OpenLayers
3 builds with just the functionality your application needs. Custom builds are
often much smaller that the full build, so creating custom builds is often
a very good idea.

Requirements

OpenLayers 3 builds are created by using the Closure
Compiler. The goal of the
Closure Compiler is to compile JavaScript to better JavaScript, that takes less
time to downoad and run faster.

The Closure Compiler is a Java program, so running the Compiler requires a Java
Virtual Machine. So before jumping to the next section, and creating a custom
build, make sure Java is installed on your machine.

You just need the Java Runtime Environment, which you can download from the
Oracle Java
site. For
example, for Windows, you would download and install
jre-8u60-windows-i586.exe.

Build configuration file

Creating a custom build requires writing a build configuration file. The format
of build configuration files is JSON. Here is a simple example of a build
configuration file:

{
 "exports": [
 "ol.Map",
 "ol.View",
 "ol.layer.Tile",
 "ol.source.OSM"
],
 "jvm": [],
 "umd": true,
 "compile": {
 "externs": [
 "externs/bingmaps.js",
 "externs/closure-compiler.js",
 "externs/esrijson.js",
 "externs/geojson.js",
 "externs/oli.js",
 "externs/olx.js",
 "externs/proj4js.js",
 "externs/tilejson.js",
 "externs/topojson.js"
],
 "define": [
 "goog.array.ASSUME_NATIVE_FUNCTIONS=true",
 "goog.dom.ASSUME_STANDARDS_MODE=true",
 "goog.json.USE_NATIVE_JSON=true"
],
 "jscomp_error": [
 "*"
],
 "jscomp_off": [
 "useOfGoogBase",
 "unnecessaryCasts",
 "lintChecks"
],
 "extra_annotation_name": [
 "api", "observable"
],
 "compilation_level": "ADVANCED",
 "warning_level": "VERBOSE",
 "use_types_for_optimization": true,
 "manage_closure_dependencies": true
 }
}

The most relevant part of this configuration object is the exports array.
This array declares the functions/constructors you use in your JavaScript code.
For example, the above configuration file is what you'd use for the following
JavaScript code:

var map = new ol.Map({
 target: 'map',
 layers: [
 new ol.layer.Tile({
 source: new ol.source.OSM()
 })
],
 view: new ol.View({
 center: [0, 0],
 zoom: 4
 })
});

 Create custom builds

 Creating custom builds

In this section we're going to create a custom build for the map you created at
the last chapter.

	Start with the map.html file you created previously: <!doctype html>
 <html lang="en">
 <head>
 <link rel="stylesheet" href="/ol.css" type="text/css">
 <style>
 #map {
 height: 256px;
 width: 512px;
 }
 </style>
 <title>OpenLayers 3 example</title>
 <script src="/loader.js" type="text/javascript"></script>
 </head>
 <body>
 <h1>My Map</h1>
 <div id="map"></div>
 <script type="text/javascript">
 var style = (function() {
 var stroke = new ol.style.Stroke({
 color: 'black'
 });
 var textStroke = new ol.style.Stroke({
 color: '#fff',
 width: 3
 });
 var textFill = new ol.style.Fill({
 color: '#000'
 });
 return function(feature, resolution) {
 return [new ol.style.Style({
 stroke: stroke,
 text: new ol.style.Text({
 font: '12px Calibri,sans-serif',
 text: feature.get('key'),
 fill: textFill,
 stroke: textStroke
 })
 })];
 };
 })();
 var map = new ol.Map({
 target: 'map',
 layers: [
 new ol.layer.Tile({
 source: new ol.source.OSM()
 }),
 new ol.layer.Vector({
 title: 'Buildings',
 source: new ol.source.Vector({
 url: '/data/layers/buildings.kml',
 format: new ol.format.KML({
 extractStyles: false
 })
 }),
 style: style
 })
],
 view: new ol.View({
 center: ol.proj.fromLonLat([-122.79264450073244, 42.30975194250527]),
 zoom: 16
 })
 });
 </script>
 </body>
 </html>

	Create a build configuration file for that map:{
 "exports": [
 "ol.Map",
 "ol.View",
 "ol.format.KML",
 "ol.layer.Tile",
 "ol.layer.Vector",
 "ol.proj.fromLonLat",
 "ol.source.OSM",
 "ol.source.Vector",
 "ol.style.Fill",
 "ol.style.Stroke",
 "ol.style.Style",
 "ol.style.Text"
],
 "jvm": [],
 "umd": true,
 "compile": {
 "externs": [
 "externs/bingmaps.js",
 "externs/closure-compiler.js",
 "externs/esrijson.js",
 "externs/geojson.js",
 "externs/oli.js",
 "externs/olx.js",
 "externs/proj4js.js",
 "externs/tilejson.js",
 "externs/topojson.js"
],
 "define": [
 "goog.array.ASSUME_NATIVE_FUNCTIONS=true",
 "goog.dom.ASSUME_STANDARDS_MODE=true",
 "goog.json.USE_NATIVE_JSON=true",
 "ol.ENABLE_DOM=false",
 "ol.ENABLE_WEBGL=false",
 "ol.ENABLE_PROJ4JS=false",
 "ol.ENABLE_IMAGE=false",
 "goog.DEBUG=false"
],
 "jscomp_error": [
 "*"
],
 "jscomp_off": [
 "useOfGoogBase",
 "unnecessaryCasts",
 "lintChecks"
],
 "extra_annotation_name": [
 "api", "observable"
],
 "compilation_level": "ADVANCED",
 "warning_level": "VERBOSE",
 "use_types_for_optimization": true,
 "manage_closure_dependencies": true
 }
 }

	Create the custom build using OpenLayers's build.js Node script:

$ node node_modules/openlayers/tasks/build.js ol-custom.json ol-custom.js

This will generate the ol-custom.js custom build at the root of the
the project.

	Now change map.html to use the custom build (ol-custom.js) rather
than the development loader.

So change

<script src="/loader.js" type="text/javascript"></script>

to

<script src="/ol-custom.js" type="text/javascript"></script>

The page should now load much faster than before!

 Ext JS

 Ext JS Workshop

Welcome to the Ext JS Workshop. This workshop is designed to deliver you a
first insight into the JavaScript framework Ext JS for developing web
applications. As this workshop is further intended for beginners we'll mainly
focus on the core concepts and components delivered by Ext JS by simple tasks.
Hence we'll learn how to include the framework into a basic HTML page, how to
use the Viewport, what user interface components Ext JS provides to us and how
to programmatically interact with these components.

These goals are subdivided into the following sets of modules:

	Introduction to Ext JS

	Basics

	Layouts

	Components

	Data

	Events

Let's start with the introduction to Ext JS!

 Introduction

 Introduction

What is Ext JS?

Ext JS is a JavaScript based application framework for developing interactive
cross-platform applications and is a product of Sencha.

Useful resources

API documentation

The quantity and quality of the ExtJS API documentation is outstanding.

	http://docs.sencha.com/extjs/6.0/6.0.0-classic/

The docs provide a list of all classes on the left and details once you click
on any class. In order to understand and make use of ExtJS, it is crucial to
fully grasp the documentation.

Examples

The examples for the ExtJS framework can be found here:

http://examples.sencha.com/extjs/6.0.0/examples/

As with the API documentation, you may at first be overwhelmed at the sheer
masses of examples. It is nonetheless very useful to click through some of
them, as the show how to combine the classes of the framework into small working
applications.

Other

	If you want to quickly check some class, you can e.g. use the Sencha Fiddle website.

	Specific questions (and answers) can be browsed in the Sencha Forums.

 Workshop Setup

 Workshop setup

The workshop requires a minimum of preliminary work. Please follow the next
steps to set up your workshop environment.

Prepare workshop folder

In this workshop we're going to learn the basics of Ext JS by the use of simple
consecutive exercises, where we're going to create (and save) HTML files on your
local computer. In order to have a comparable setup, at first we'll create an
appropriate workshop folder, where to put these files in.

	Open the terminal and navigate to your home folder with: $ cd ~

	Create a new folder named ext-workshop with: $ mkdir ext-workshop

	Enter the newly created directory with: $ cd ext-workshop

Some examples will need some additional files. Download these files by performing
the following steps:

	Reopen the terminal and download the workshop files into your ext-workshop
 folder with: $ wget http://terrestris.github.io/momo3-ws/en/extjs/materials.tar.gz

	Extract the downloaded archive file with (this will create a folder named
 materials in your workshop directory): $ tar -xvzf materials.tar.gz

Prepare simple workshop HTTP server

For the first exercises we won't have any need for serving our code snippets
via the HTTP protocol, but in the later parts we're going to use technologies
that require a local HTML server. A very simple way to serve a content of a
specific directory over a web server is to use the SimpleHTTPServer
module provided by Python.
In the next few steps we're going to start the SimpleHTTPServer in the workshop
directory where all upcoming exercise files will be served over the HTTP protocol.

	(optional) Open the terminal and navigate to your workshop folder with: $ cd ~/ext-workshop

	Run the SimpleHTTPServer with: $ python -m SimpleHTTPServer

This should give you the following output meaning that the files of the current
directory are served through port number 8000.

Serving HTTP on 0.0.0.0 port 8000 ...

	Finally open a web browser and navigate to http://0.0.0.0:8000 which
 should give you a listing of all available files in the served web directory.

[image: The running SimpleHTTPServer]The running SimpleHTTPServer

 If you want to quit the server, you can either simply quit the
 terminal or press Ctrl + C.

 Basics

 Basics

Now that our development environment is ready, it's time to get started.

In this chapter we'll learn how to:

	Create a simple HTML file and how to embed Ext JS

	Create your first Ext JS component

	Create and configure the Ext JS Viewport

 Include Ext JS

 Basic HTML file with Ext JS

We'll start the workshop with creating a simple HTML page and embed the
framework into it.

Create basic HTML page

Basically we'll work with a single HTML file we'll extend gradually within each
section only. Our initial file will thereby only contain the basic HTML template
showing a heading. Let's create the file by the use of the (highly recommended)
text editor atom.

Exercise

	Open the terminal and navigate to your workshop directory (if not already done)
 with: $ cd ~/ext-workshop

	Start the atom editor with the ext-workshop directory
 as project: $ atom .

[image: Start view atom editor.]Start view atom editor.
Having atom opened we can create a new file by opening the context-menu on the
project folder ext-workshop and selecting New File.

	Create a new file named index.html in the exercise directory and copy the
 content of the following basic HTML template into it
basic-template.html

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>This is a basic HTML template</title>
 </head>
 <body>
 <h1>Use this template to create your own HTML files</h1>
 </body>
</html>

	Reopen the browser and (re-)load the URL http://0.0.0.0:8000 to see the
 changes take effect:

[image: The basic HTML page.]The basic HTML page.
Include Ext JS

In the next step we'll insert two important lines into the index.html that
will automatically include the full ExtJS library into our basic HTML template.
The Ext JS code itself is also available online via cdnjs, so we don't
necessarily have to download the framework code to our local machine first. As
you will see in the next few steps, the (productive version of the) framework
consists of two files: Both a CSS (Cascading Style Sheets) and a JS
(JavaScript) file:

Exercise

	Include the external files inside the end of your <head>
 element of your index.html:
include-ext-cdnjs.html

<!-- include a CSS stylesheet -->
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/classic/theme-triton/resources/theme-triton-all.css" type="text/css">
<!-- include an external JavaScript file -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/ext-all.js" type="text/javascript"></script>

	Again, reload the URL in the browser and keep track of the changes:

[image: The basic HTML page after including Ext JS.]The basic HTML page after including Ext JS.

 For this workshop it's satisfying to include the full builds of the
 framework and to always load them in the head. This technique
 allows us to basically forget about these resources for the course
 of the workshop. For a production website you would probably load
 the files in a different manor, and you would rather not load the
 versions of the libraries which contain everything. But the creation
 of specific versions of the base libraries that only include what
 your application actually needs, is way beyond the scope of this
 workshop.

 Hello Ext JS

 Ext JS is here!

Having the last module finished, we have a simple HTML page without any real use
of the Ext JS framework present. We'll continue by creating a very simple Ext JS
component to verify the framework is ready to work with.

Exercise

	(Re-)open your index.html and replace the <h1> element block
 within the <body> tag with the following <script> block:
open-window.html

<script type="text/javascript">
 Ext.onReady(function() {

 Ext.create('Ext.window.Window', {
 title: 'Hello',
 height: 200,
 width: 400,
 layout: 'fit',
 bodyPadding: 15,
 constrain: true,
 html: 'Ext JS is here!'
 }).show();

 });
</script>

	Reload the page in the browser and look what's going to happen:

[image: Hello Ext JS.]Hello Ext JS.
So, what have we done to create this simple Ext JS window?

The contents of the <script type="text/javascript"> tag will be interpreted as
JavaScript by the browser and any JavaScript code in it'll be run as soon as the
interpreter sees it.
In the next line we are finally going to really work with Ext JS. Ext is the
global namespace that encapsulates all classes, singletons and methods provided
by the framework. By calling it on the root scope (as the global singleton
object), we have access to the global methods provided by Ext JS. Here we execute
the method onReady() which has an anonymous function as argument. This
function is being processed as soon as the document is ready (but before the
document's onload listener and before images are loaded).

 As already mentioned, the Ext JS API documentation
 is quite substantial and really helpful while developing applications.
 Please take your time to get familiar with the documentation and
 start by inspecting the docs for the method onReady() used above
 by following this link.

In the anonymous function we pass to the Ext.onReady() method we execute - once
again on the Ext global object - the method create(). With the help of this
method we instantiate a Ext JS class (to be more specific: a subclass of
Ext.Base) by its full class name. Here we create the class Ext.window.Window,
which, as you may noticed, is a floating, resizable and draggable window
containing simple HTML text as content. Every component has a individual set of
configuration parameters (e.g. title), which are passed to the create()
method as the second parameter (and bunched in an object). And over again: See
the documentation for a full list of all available Configs for the
window class.

 Viewport

 Ext JS Viewport

In contrast to other JavaScript frameworks (e.g. jQuery) Ext JS is typically
used to serve as an integral framework that is used to build feature-rich single
page applications (SPA) and not as some kind of an "utility" or "helper"
framework for isolated challenges. Thus you would generally not use Ext JS to
integrate a single window (as created in the former section) in your existing
webapplication.

When developing an Ext JS application, (one of) the main components you're
dealing with, is the Ext.container.Viewport. The Viewport class represents a
specialized container that automatically resizes itself to the size of the
document body and therefore the viewable application area. Further on it
automatically resizes due to resizing the browser window and will perform sizing
and positioning on its child components as you can add other Ext JS UI components
and containers to it. How the positioning inside the Viewport takes place is
thereby configurable by a so called Layout (see next chapter).

 Given that the Viewport sizes to browser window, it's reasonable to
 have a single viewport per Ext JS application only.

In this section we're going create a simple viewport containing a set of nested
child components. This viewport will then act as the basic template for any
further exercise in this workshop.

Exercise

	(Re-)open your index.html and replace the code creating the Ext.window.Window
 component with the following snippet
viewport-simple.js

Ext.create('Ext.container.Viewport', {
 defaults: {
 bodyPadding: 15
 },
 items: [{
 title: 'Item 1',
 html: 'Content 1'
 }, {
 title: 'Item 2',
 html: 'Content 2'
 }, {
 title: 'Item 3',
 html: 'Content 3'
 }, {
 title: 'Item 4',
 html: 'Content 4'
 }]
});

	Reload the application page in the browser and you'll notice the first
 elementary indications of a simple full-screen webapplication (Try to resize
 the browser window!):

[image: Simple viewport.]Simple viewport.
In the above example we used the method Ext.create() to instantiate the
component Ext.container.Viewport very similar to the previous example. The
result is a stack of four components composed of a title and a html value.
Per defaults we declare that each direct child component in the Viewport -
configured as item - should be rendered with a bodyPadding of 15 pixels
additionally.

Exercise

	Use the Ext JS API documentation for the Viewport class (here)
 to answer this question:
I created an Ext JS viewport with a couple of items without any specific
 configurations except title and html. At his juncture the html
 parameter includes a plenty of text content. Strangely I could not see any
 scrollbars, if the browser window gets resized. What is wrong here?

 Layouts

 Layouts

An Ext JS application (UI) is always made up of single components based on the
base class Ext.Components. The Viewport class we have seen in the previous
chapter is some kind of a special type of a component as it may contain other
components. Once Ext JS components are inserted into a superior container, its
layout properties must be defined (according to the requirement by your
application).

[image: Component architecture, source: https://docs.sencha.com/extjs/6.0/core_concepts/images/component_architecture.png]Component architecture, source: https://docs.sencha.com/extjs/6.0/core_concepts/images/component_architecture.png
The Layout tells this superior container (e.g. the Viewport) how to properly
arrange its child components (e.g. Panel) in sizing and positioning. As you
may correctly note, the recent example we were using hasn't any specific layout
set, but could be rendered in the browser. This happens because the default
layout for all containers is the layout type Auto and this layout does not
specify any special positioning or sizing rules for child elements. It simply
renders the child items as normal block elements in the DOM.

Generally the layout of a Container has the be set via the layout configuration
attribute. In most cases it's satisfactory to set the name of the requested layout
as a simple string (e.g. 'auto') only, but there are layouts
available where a full object, specifying the layout options in more detail, are
allowed. Furthermore several layouts hold particular attributes related to the child
components of the container specifying e.g. it's inner position or size.

In this section we're going to have a quick look to some of the predefined
layouts Ext JS provides to us. Here we focus on the following layouts:

 The descriptions given in the upcoming subsections are based on the
 API documentation.

	Column

	HBox

	VBox

	Accordion

	Table

	Border

For a full list of all layouts have a look at the API documentation
or the Kitchen Sink.

 Column

 Column

The Column layout is the layout style of choice for creating structural
layouts in a multi-column format where the width of each column can be specified
as a percentage or fixed width, but the height is allowed to vary based on the
content.

The layout does not have any direct config options, but it does support a
specific config property of columnWidth that can be included in the config
of any panel added to it. The layout will use the columnWidth (if present) or
width of each panel during layout to determine how to size each panel. If
width or columnWidth is not specified for a given panel, its width will
default to the panel's width (or auto).

The width property is always evaluated as pixels and must be a number greater
than or equal to 1. The columnWidth property is always evaluated as a
percentage and must be a decimal value greater than 0 and less than 1 (e.g. .25).

Exercise

	(Re-)open your index.html and update the code creating the Ext.container.Viewport
 component to match the following snippet:
layout-column.js

Ext.create('Ext.container.Viewport', {
 layout: 'column',
 defaults: {
 bodyPadding: 15,
 },
 items: [{
 title: 'Item 1',
 columnWidth: 0.3,
 html: 'Content 1'
 }, {
 title: 'Item 2',
 columnWidth: 0.2,
 html: 'Content 2'
 }, {
 title: 'Item 3',
 columnWidth: 0.2,
 html: 'Content 3'
 }, {
 title: 'Item 4',
 columnWidth: 0.3,
 html: 'Content 4'
 }]
});

	Reload the page in the browser and take a look at the result:

[image: Column layout.]Column layout.

 HBox

 HBox

The HBox layouts arranges items horizontally across the container. This layout
optionally divides available horizontal space between child items containing a
numeric flex configuration.

This layout may also be used to set the heights of child items by configuring
it with the align option. Additionally you can specify how the child items of
the container are packed together by setting the pack option.

Exercise

	(Re-)open your index.html and update the code creating the Ext.container.Viewport
 component to match the following snippet:
layout-hbox.js

Ext.create('Ext.container.Viewport', {
 layout: {
 type: 'hbox',
 pack: 'start',
 align: 'stretch'
 },
 defaults: {
 bodyPadding: '10 15',
 margin: 5,
 flex: 1,
 },
 items: [{
 title: 'Item 1',
 html: 'Content 1'
 }, {
 title: 'Item 2',
 flex: 1.5,
 html: 'Content 2'
 }, {
 title: 'Item 3',
 html: 'Content 3'
 }, {
 title: 'Item 4',
 html: 'Content 4'
 }]
});

	Reload the page in the browser and take a look at the result:

[image: HBox layout.]HBox layout.

 VBox

 VBox

The VBox layouts arranges items vertically across the container. This layout
optionally divides available vertical space between child items containing a
numeric flex configuration.

This layout may also be used to set the widths of child items by configuring
it with the align option. Additionally you can specify how the child items of
the container are packed together by setting the pack option.

Exercise

	(Re-)open your index.html and update the code creating the Ext.container.Viewport
 component to match the following snippet:
layout-vbox.js

Ext.create('Ext.container.Viewport', {
 layout: {
 type: 'vbox',
 pack: 'start',
 align: 'stretch'
 },
 defaults: {
 bodyPadding: '10 15',
 margin: 5,
 flex: 1,
 },
 items: [{
 title: 'Item 1',
 html: 'Content 1'
 }, {
 title: 'Item 2',
 flex: 1.5,
 html: 'Content 2'
 }, {
 title: 'Item 3',
 html: 'Content 3'
 }, {
 title: 'Item 4',
 html: 'Content 4'
 }]
});

	Reload the page in the browser and take a look at the result:

[image: VBox layout.]VBox layout.

 Accordion

 Accordion

The Accordion layout is a layout that manages multiple Panels in an expandable
accordion style such that by default only one panel can be expanded at any given
time (set multi-config to have more open). Each Panel has built-in support for
expanding and collapsing.

 Only panels and all subclasses of Ext.panel.Panel may be used in
 an accordion layout container.

Exercise

	(Re-)open your index.html and update the code creating the Ext.container.Viewport
 component to match the following snippet:
layout-accordion.js

Ext.create('Ext.container.Viewport', {
 layout: 'accordion',
 defaults: {
 bodyPadding: 15,
 border: false
 },
 items: [{
 title: 'Item 1',
 html: 'Content 1'
 }, {
 title: 'Item 2',
 html: 'Content 2'
 }, {
 title: 'Item 3',
 html: 'Content 3'
 }, {
 title: 'Item 4',
 html: 'Content 4'
 }]
});

	Reload the page in the browser and take a look at the result:

[image: Accordion layout.]Accordion layout.

 Table

 Table

The Table layout allows you to easily render content into an HTML table. The
total number of columns can be specified, and rowspan and colspan can be
used to create complex layouts within the table.

In the case of Table layout, the only valid layout config properties are
columns and tableAttrs. However, the items added to a layout can supply the
config properties rowspan (the number of rows that the spanned cell needs to
cover), colspan (the number of cells that the cell should replace) and
cellCls (a CSS class name added to the table cell containing the item).

The basic concept of building up a Table layout is conceptually very similar
to building up a standard HTML table. You simply add each panel (or "cell") that
you want to include along with any span attributes specified as the special
config properties of rowspan and colspan which work exactly like their HTML
counterparts. Rather than explicitly creating and nesting rows and columns as
you would in HTML, you simply specify the total column count in the layout
config and start adding panels in their natural order from left to right, top
to bottom. The layout will automatically figure out, based on the column count,
rowspans and colspans, how to position each panel within the table.

 Just like with HTML tables, your rowspans and colspans must add
 up correctly in your overall layout or you'll end up with missing
 and/or extra cells!

Exercise

	(Re-)open your index.html and update the code creating the Ext.container.Viewport
 component to match the following snippet:
layout-table.js

Ext.create('Ext.container.Viewport', {
 layout: {
 type: 'table',
 columns: 3,
 tableAttrs: {
 style: {
 width: '100%'
 }
 }
 },
 defaults: {
 bodyPadding: 15,
 },
 items: [{
 title: 'Item 1',
 rowspan: 1,
 colspan: 1,
 html: 'Content 1'
 }, {
 title: 'Item 2',
 rowspan: 1,
 colspan: 1,
 html: 'Content 2'
 }, {
 title: 'Item 3',
 rowspan: 1,
 colspan: 1,
 html: 'Content 3'
 }, {
 title: 'Item 4',
 colspan: 2,
 rowspan: 1,
 html: 'Content 4'
 }]
});

	Reload the page in the browser and take a look at the result:

[image: Table layout.]Table layout.

 Border

 Border

The Border layout is a multi-pane, application-oriented UI layout style that
supports multiple nested panels, automatic bars between regions and built-in
expanding and collapsing of regions.

When using this layout note, that any container using the border layout must
have a child item with region:'center'. This child item in
the center region will always be resized to fill the remaining space not used by
the other regions in the layout. Any child items with a region of west or
east may be configured with either an initial width, flex or an initial
percentage width value. Any child items with a region of north or south
may be configured with either an initial height, flex value or an initial
percentage height value.

Exercise

	(Re-)open your index.html and update the code creating the Ext.container.Viewport
 component to match the following snippet:
layout-border.js

Ext.create('Ext.container.Viewport', {
 layout: 'border',
 defaults: {
 bodyPadding: 15,
 collapsible: true,
 split: true
 },
 items: [{
 title: 'Item 1',
 region: 'north',
 height: 100,
 html: 'Content 1'
 }, {
 title: 'Item 2',
 region: 'east',
 width: 150,
 html: 'Content 2'
 }, {
 title: 'Item 3',
 region: 'west',
 width: 150,
 html: 'Content 3'
 }, {
 title: 'Item 4',
 region: 'center',
 html: 'Content 4'
 }]
});

	Reload the page in the browser and take a look at the result:

[image: Border layout.]Border layout.

 Components

 Components

Components are referred to the Ext JS class Ext.Component which is the base
class for all components. Generally speaking a component itself is a predefined
Ext JS compatible module composed of HTML, CSS and JavaScript. In the former
exercises we already met the components Ext.window.Window, Ext.container.Viewport
and Ext.panel.Panel (whereas the latter not explicit, but it's the default
component in the Viewport container).

Every Component has a shorthand name called xtype. The xtype is especially
useful if you want to render your application lazily, that means rendering your
components at the time they're getting meaningful for your application, e.g.
creating an error message at the time an error occurred. In the upcoming examples
we'll use the xtype to create components.

A typical application's component hierarchy starts with a viewport at the top,
which has other containers and/or components nested within it.

[image: The component hierarchy, source: https://docs.sencha.com/extjs/6.0/core_concepts/images/component_heirarchy_5.png]The component hierarchy, source: https://docs.sencha.com/extjs/6.0/core_concepts/images/component_heirarchy_5.png
In the upcoming section we're going to inspect some components that might be
useful for any Ext JS application your're going to develop in the future:

 The descriptions given in the upcoming subsections are based on the
 API documentation.

	Panel

	Image

	Form

	Tree

	Grid

 Panel

 Panel

A Panel is a container designed for building structured blocks for application
oriented user interfaces. Panels are, by their inheritance from
Ext.container.Container, capable of being configured with a layout (see
previous chapter) and containing child components.
Panels also provide built-in collapsible, expandable and closable behavior and
can be easily dropped into any container or layout, whereas the layout and
rendering is completely managed by the framework.

In most applications the panel is one of the most often used components. In the
next exercise we'll extent our existing viewport by only a few configurations
and will see, that we have worked with panels (even we haven't specified it) yet.

Exercise

	(Re-)open your index.html and extend the Ext.container.Viewport to match
 the following snippet:
component-panel.js

Ext.create('Ext.container.Viewport', {
 layout: 'border',
 defaults: {
 xtype: 'panel',
 bodyPadding: 15,
 collapsible: true,
 split: false,
 margin: 5
 },
 items: [{
 region: 'north',
 collapsible: false,
 height: 60,
 border: false,
 html: 'Content 1'
 }, {
 title: 'Item 2',
 region: 'east',
 width: '20%',
 html: 'Content 2'
 }, {
 title: 'Item 3',
 region: 'west',
 width: '20%',
 html: 'Content 3'
 }, {
 region: 'center',
 collapsible: false,
 html: 'Content 4'
 }, {
 title: 'Item 5',
 region: 'south',
 maxHeight: 350,
 collapsed: true,
 html: 'Content 5'
 }]
});

[image: Advanced Border layout.]Advanced Border layout.
As you may notice, it's hardly to spot any viewable difference to our previous
example. But have a look at the defaults attribute set in the viewport. It
contains a new key named xtype (remember: it's the shorthand name for a
component) with the value panel. Thus every direct child in the viewport will
be instantiated as a panel.

Advanced panel configuration

A Panel may also contain bottom and top toolbars, along with separate header,
footer and body sections.

Exercise

	(Re-)open your index.html and extend the panel rendered in the viewports
 center by the following snippet:
component-panel-toolbar.js

tbar: [{
 xtype: 'button',
 text: 'Button 1',
 iconCls: 'fa fa-repeat'
}]

	Reload the page in the browser and take a look at the result:

[image: Panel toolbar.]Panel toolbar.

 Image

 Nested components

The Ext.Img component can be used to insert an image into the Ext JS handled
lifecycle. For example the class makes it easy to change the source of the image
container.

Exercise

	(Re-)open your index.html and extend the Ext.container.Viewport items
 by the following snippet:
component-image.js

{
 region: 'north',
 collapsible: false,
 height: 60,
 border: false,
 bodyPadding: 5,
 items: [{
 xtype: 'image',
 src: './materials/ext-logo.png',
 height: 50
 }]
}

	Reload the page in the browser and take a look at the result:

[image: Nested component image in a panel.]Nested component image in a panel.

 Form

 Form Fields

The Ext.form.Panel presents a subclass of the panel and is especially useful
for building user interaction web forms and for saving and loading remote data.
Usually you combine a form panel with subclasses inherited from the
Ext.field.Field class. In the following example we'll get to know some of the
most important fields one would use in a form (listed with xtypes and links to
the API documentation):

	textfield

	displayfield

	numberfield

	combobox

	checkbox

	datepicker

	slider

	filefield

	button

Exercise

	(Re-)open your index.html and extend the panel in the viewport's east region
 by the following snippet:
component-form-fields.js

{
 xtype: 'form',
 title: 'FormPanel',
 region: 'east',
 width: '20%',
 autoScroll: true,
 defaults: {
 anchor: '100%'
 },
 items: [{
 xtype: 'textfield',
 name: 'text',
 fieldLabel: 'Text',
 emptyText: 'Enter a text'
 }, {
 xtype: 'displayfield',
 name: 'status',
 fieldLabel: 'Status',
 value: 'OK'
 }, {
 xtype: 'numberfield',
 name: 'number',
 fieldLabel: 'Number',
 emptyText: 'Enter a number',
 minValue: 0,
 maxValue: 99
 }, {
 xtype: 'combo',
 name: 'combo',
 fieldLabel: 'Combo',
 emptyText: 'Select from list',
 minValue: 0,
 maxValue: 99,
 store: [
 'Entry 1',
 'Entry 2',
 'Entry 3'
]
 }, {
 xtype: 'checkbox',
 name: 'check',
 fieldLabel: 'Check'
 }, {
 xtype: 'datefield',
 name: 'dateField',
 fieldLabel: 'Date Field'
 }, {
 xtype: 'slider',
 name: 'slider',
 fieldLabel: 'Slider',
 minValue: 0,
 maxValue: 100,
 value: 25
 }, {
 xtype: 'filefield',
 name: 'upload',
 fieldLabel: 'Upload'
 }]
}

	Reload the page in the browser and take a look at the result:

[image: Nested component image in a panel.]Nested component image in a panel.
As stated above, the form is very useful if you want to systematically read out
values given by the user and to work with them afterwards, e.g. sending the
values to a server endpoint. In the next example we're going to create another
useful form component, the Ext.form.FieldSet class. The fieldset is a
specialized container for grouping fields. We we'll now create a fieldset with
a textarea and a button (ignore the handler method for the moment, we'll explain
events and component querying later on).

	Add the following fieldset to the lower end of the form field we declared above: {
 xtype: 'fieldset',
 title: 'Input data',
 layout: 'fit',
 items: [{
 xtype: 'textarea',
 height: 180,
 isFormField: false
 }, {
 xtype: 'button',
 text: 'Read input data',
 handler: function(btn) {
 var form = btn.up('form'),
 textArea = form.down('textarea');
 textArea.setValue(
 JSON.stringify(
 form.getValues(), null, 4
)
);
 }
 }]
 }

	Reload the page in the browser, enter some custom values in the form field and
 press the button Read input data:

[image: Nested component image in a panel.]Nested component image in a panel.

 Tree

 Trees

The Ext.tree.Panel class provides a tree-structured UI representation of
tree-structured data. A treepanel must be bound to a Ext.data.TreeStore (the
Ext JS data package including stores will be handled in the
next chapter).

Exercise

	(Re-)open your index.html and extend the Ext.container.Viewport items
 by the following snippet:
component-treepanel.js

{
 xtype: 'treepanel',
 width: '20%',
 bodyPadding: 0,
 title: 'TreePanel',
 region: 'west',
 rootVisible: false,
 store: {
 data: {
 text: 'Root',
 children: [{
 text: 'Child 1',
 leaf: true
 }, {
 text: 'Child 2',
 leaf: true
 }, {
 text: 'Child 3',
 leaf: true
 }, {
 text: 'Child 4',
 children: [{
 text: 'GrandChild 1',
 leaf: true
 }, {
 text: 'GrandChild 2',
 leaf: true
 }]
 }]
 }
 }
}

	Reload the page in the browser and take a look at the result:

[image: Treepanel with dummy items.]Treepanel with dummy items.

 Grid

 Grid

The Ext.grid.Panel class is of avail for showing up (large amounts) of tabular
data. The required properties of a gridpanel are a store and a column definition.

Exercise

	(Re-)open your index.html and extend the Ext.container.Viewport items
 by the following snippet:
component-grid.js

{
 xtype: 'gridpanel',
 title: 'GridPanel',
 region: 'south',
 bodyPadding: 0,
 maxHeight: 350,
 collapsed: true,
 columns: [{
 text: 'First name',
 dataIndex: 'firstName',
 flex: 1
 }, {
 text: 'Last name',
 dataIndex: 'lastName',
 flex: 1
 }, {
 text: 'Instruments',
 dataIndex: 'instruments',
 flex: 1
 }],
 store: {
 data: [{
 firstName: 'Angus',
 lastName: 'Young',
 instruments: 'Guitar'
 }, {
 firstName: 'Cliff',
 lastName: 'Williams',
 instruments: 'Bass guitar, vocals'
 }, {
 firstName: 'Brian',
 lastName: 'Johnson',
 instruments: 'Vocals'
 }, {
 firstName: 'Stevie',
 lastName: 'Young',
 instruments: 'Guitar, vocals'
 }, {
 firstName: 'Chris',
 lastName: 'Slade',
 instruments: 'Drums, percussion'
 }]
 }
}

	Reload the page in the browser and take a look at the result:

[image: Gridpanel with some inline data.]Gridpanel with some inline data.
Final output

Finally your Ext JS application should look similar to this:

[image: Final application layout.]Final application layout.

 Data

 Data

Now we've became acquainted with one of most important Ext JS visual components,
we're going to learn how one could load remote data into the existing
webapplication without reloading the page itself. For example this might be
interested for you if you want to implement a paging functionality to the
grid. In this context we'll get in touch with the Ext JS data package that is
responsible for loading (and saving) all of the data in the application. The
package consists of multiple classes, but there are three that are more important
than all the others: The Ext.data.Model, Ext.data.Store and Ext.data.proxy.Proxy
(sub-)classes.

[image: The Ext JS data package, source: http://docs.sencha.com/extjs/6.0/core_concepts/images/data-model.png]The Ext JS data package, source: http://docs.sencha.com/extjs/6.0/core_concepts/images/data-model.png
In the forthcoming exercises we're going to recreate a gridpanel in the center
of our border layout that'll contain an Ext.data.Store reading remote data
with the use of an Ext.data.proxy.Ajax proxy. The store will be associated
with an Ext.data.Model.

	Preparation

	Model

	Proxy and store

 Preparation

 Preparation

Let's start this section by creating another gridpanel in the center of our
border layout. Here we're going to replace the existing the panel with the
gridpanel by keeping the toolbar. The toolbar (and its button) will be needed
in the next module. The columns definition will stay unaffected in comparison
to the gridpanel we created in the recent exercise.

Exercise

	(Re-)open your index.html and find the declaration of the center region.

	Replace the panel in the border layouts center with a grid, but leave the
 toolbar and set the store to null (for the moment).
data-grid.js

{
 xtype: 'gridpanel',
 title: 'GridPanel with remote store',
 region: 'center',
 collapsible: false,
 bodyPadding: 0,
 columns: [{
 text: 'First name',
 dataIndex: 'firstName',
 flex: 1
 }, {
 text: 'Last name',
 dataIndex: 'lastName',
 flex: 1
 }, {
 text: 'Instruments',
 dataIndex: 'instruments',
 flex: 1
 }],
 store: null,
 tbar: [{
 xtype: 'button',
 text: 'Button 1',
 iconCls: 'fa fa-repeat'
 }]
}

	Reload the page in the browser and verify the empty gridpanel in the layouts
 center:

[image: The new gridpanel.]The new gridpanel.

 Model

 Model

The core of the data package is the Ext.data.Model class. A Model or Entity
represents some object that your application manages, e.g. the (former) members
of a rock band. Models are used by stores, which are in turn used by many of the
data-bound components in Ext JS. The most significant parts (or properties) of a
model are Fields (they handle the members of a model), Proxies (they handle
the loading and saving of model data), Validations (they handle validation of
the data, e.g. if a field has not-null value) and Associations (they handle the
relations and linkages to other model instances).

[image: Parts of the Ext JS model class, source: http://docs.sencha.com/extjs/6.0/core_concepts/images/model-breakdown.png]Parts of the Ext JS model class, source: http://docs.sencha.com/extjs/6.0/core_concepts/images/model-breakdown.png
In this exercise we'll build up a simple model, that'll contain some (string)
fields and simple validation for input data (ensuring that all fields have a
value). As we only have this single model we don't want to model any
associations. Please refer to the API documentation
for further details. You both have the possibility to assign the proxy in the
model or the store (using that model). Both ways do have advantages depending on
your application setup: If you set the proxy in the model it allows you to load
and save instances of this model without the need of a store and multiple stores
could use the same model. In contrast defining the proxy in the store it allows
you to use the same data model in multiple stores, even if the stores will load
their data from different sources. In this exercise we're going to set the proxy
in the store (without any specific reason).

Exercise

	(Re-)open your index.html and insert the following code before the
 instantiation of the viewport (line ~15) to create a new model called
 FormerMembers:
data-model.js

Ext.define('FormerMembers', {
 extend: 'Ext.data.Model',
 fields: [{
 name: 'firstName',
 type: 'string'
 }, {
 name: 'lastName',
 type: 'string'
 }, {
 name: 'instruments',
 type: 'string'
 }],
 validators: {
 firstName: 'presence',
 lastName: 'presence',
 instruments: 'presence'
 }
});

 Proxy and store

 Proxy and store

A store takes care of the client side caching of model objects and can be
configured to load data via a proxy. They provide different functions for
accessing the underlying model instances (e.g. sorting, filtering or querying).
To load and save instances a store uses a proxy. Generally speaking the data
source can be either local (client proxy) or remote (server proxy), whereas the
client proxies load/save their data locally and the server proxies load/save
their data by sending requests to a remote server.

In the following exercise we'll create a new Ext.data.Store reading data with
a Ext.data.proxy.Ajax from a remote source (The remote source is the python
server our simple webapplication lives on, but be aware that it could be any
other remote source).

Exercise

	(Re-)open your index.html and insert the following code after the
 instantiation of the model FormerMembers (line ~34) to create the store.
data-store.js

Ext.create('Ext.data.Store', {
 autoLoad: true,
 storeId: 'formerMembers',
 model: 'FormerMembers',
 proxy: {
 type: 'ajax',
 url: './materials/former-members.json',
 reader: {
 type: 'json',
 rootProperty: 'data'
 }
 }
});

If you would reload the page now, you wouldn't be able to see any changes in
the centered gridpanel as the newly created store isn't regarded as being
existent to the grid.

	Find the declaration of the gridpanel and update the store property to: store: 'formerMembers'

	Finally reload the page and view the results.

[image: Grid with remote data loaded.]Grid with remote data loaded.

 Events

 Events

In Ext JS events are signals from a class that are fired if anything happened
to a class. Events are fired globally in the Ext namespace so that every class
can listen to those. In our Ext JS application we can use these events to code
specific reponses that will be executed if a certain event is being fired. Nearly
all Ext JS components and classes fire different kinds of events at their
lifecycle. For example, each class inherited from Ext.Component fires the
event added after the component had been added to a container. We can listen
for that event by configuring a simple listeners object.

In this section we'll get to know three events fired by different components to
get a basic idea about the potential behind events and listeners.

	Event click

	Event afterrender

	Event change

 Event click

 Event click

The click event is being fired when e.g. a button or a menu entry is clicked.

In the following exercise we'll use the click event of the button rendered
to the toolbar in the centered panel to load the remote data if the button is
clicked by the user.

Exercise

	(Re-)open your index.html and find the instantiation of the store
 formerMembers (line ~29) we introduced in the former module.

	Set autoLoad: false in the store.

After reloading the page you should notice that the grid contains no data
anymore. Can you explain why?

In the next few steps we're going to fetch back our missing data by reusing the
already existing button in the toolbar as a Load data button:

	Find the button declaration within the panel in the center region and rename
 it accordingly (text: 'Load data').

	Register a new listener to the click-event and pass an anonymous function
 to it. This function will be called if the click event is fired by the
 button class:
event-click.js

listeners: {
 click: function(btn) {
 var gridpanel = btn.up('gridpanel');
 gridpanel.getStore().load();
 }
}

	Again, reload the page in the browser and click the updated Load data
 button.

[image: Load remote data `onClick`.]Load remote data `onClick`.
Dissecting the example

Let's have a more detailed look at the function we passed to the click
listener:

	 function(btn) {...}

 Every event can be fired with optional arguments passed to the listener. Here,
 our anonymous handler function receives the argument btn, whereat the
 variable bt holds a reference to the button instance firing the click event
 ("the clicked button").

	 var gridpanel = this.up('gridpanel');

 Remember, we are dealing with hierarchically structured components. Ext JS
 (internally) registers all instantiated components in its Ext.ComponentManager.
 Within this manager we can navigate across and search the application component
 composition. The explanation of the manager and the corresponding
 Ext.ComponentQuery singleton is far beyond the goals of this workshop, but it's
 very recommended to have a look at the very detailed documentation.
 Long story short: Each component provides us the method up() and each container
 the methods up(), down() and query() to simply navigate across the component
 hierarchy by the use of very simple filter expressions. The easiest way one can
 think of is build a filter that returns the first xtype in the lower/upper
 hierarchy level of a given component. Having this in mind, the upper method
 will return the first component of xtype gridpanel in the upper direction based
 on the pressed button.

	 gridpanel.getStore().load();

 Now we got the gridpanel, we can access the underlying store by using the
 getStore() method and directly execute the method load() to load any
 local or remote data associated with the store.

 Event afterrender

 Event afterrender

The afterrender event is being fired after a component is finally rendered
(to the DOM) and is very often used if you want to make sure, your listener
function is called after the component is rendered.

In the following exercise we'll register another listener to the button
Load data that will show up a minimalistic message box (Ext.toast) to the
user after the button has been rendered.

Exercise

	(Re-)open your index.html and find the button declaration within the
 panel in the center region and we used in the former exercise.

	Register a listener for the event afterrender by appending the following
 code block to its listeners array:
event-afterrender.js

afterrender: function(cmp) {
 Ext.toast({
 html: 'Click <code>Load data</code>!',
 title: 'Hint',
 align: 't',
 });
}

	And again, reload the page in the browser and you will see the toast.

[image: A simple Ext.toast.]A simple Ext.toast.
Dissecting the example

Let's have a more detailed look at the function we passed to the afterrender
listener:

	 function(cmp) {...}

 As already illustrated, events can hold extra arguments which will be received
 in the listener functions and similiar to the click event, the afterrender
 event passes a reference to the rendered component to the anonymous function.
 The variable cmp therefore refers to the button itself (but is not used in
 our function).

	 Ext.toast({
 html: 'Click <code>Load data</code>!',
 title: 'Hint',
 align: 't',
 });

 The Ext.toast class provides a lightweight, auto-dismissing pop-up
 notifications and is configurable by the use of a configuration object. Here we
 set both the html and title keys for a simple message and title as well as
 the align key for specifing the alignment of the toast message to the top of
 its anchor (the viewport).

 Event change

 Event change

The change event is being fired when e.g. a file input field's value has
changed.

In this (final) exercise we'll add a new textfield to the gridpanels toolbar
involving a filter function that is called on every change made by the user
to the textfield.

Exercise

	(Re-)open your index.html and find the toolbar declaration inside the
 gridpanel rendered to the center region.

At first we will make use of the class Ext.toolbar.Fill to add a non-rendering
placeholder item to the toolbar whereby all following items will be aligned to
the right of the toolbar. (Other useful toolbar items you may interested in are
tbseparator and tbspacer.)

	Add the placeholder to the end of the toolbar by inserting the following
 declaration: {
 xtype: 'tbfill'
 }

	Next we'll add a textfield with the change listener to the toolbar:
event-change.js

{
 xtype: 'textfield',
 emptyText: 'Find by First name',
 listeners: {
 change: function(field, newValue, oldValue) {
 field.up('gridpanel').getStore().filter({
 property: 'firstName',
 value: newValue || '',
 anyMatch: true,
 caseSensitive: false
 });
 }
 }
}

	Reload the page in the browser and you should notice a new textfield in the
 upper right of the centered gridpanel.

[image: Filter textfield.]Filter textfield.

	Try out the newly created filter by loading data into the grid and changing
 the textfields value.

[image: Filter textfield.]Filter textfield.
Dissecting the example

Let's have a more detailed look at the function we passed to the change
listener:

	 function(field, newValue, oldValue) {...}

 If the value of a field is changed, our anonymous function is being called with
 passed arguments field, newValue and oldValue. field holds a reference
 to the textfield itself, newValue the changed/prevailing and oldValue the
 original/preceding value.

	 field.up('gridpanel').getStore()

 Again, we use the methods up() to get a reference to the gridpanel and
 getStore() to get the associated store (see event click for the
 detailed information).

	 .filter({...})

 With the store in hand we can access all methods provided by the (instantiated)
 Ext.data.Store class. As we want to filter the store by a particular value
 given in the textfield, we can make use of the method filter(). This method
 filters the data in the store by one or more fields and can be configured with
 a detailed filter configuration (from Ext.util.Filter class).

	 {
 property: 'firstName',
 value: newValue || '',
 anyMatch: true,
 caseSensitive: false
 }

 The given object represents a filter that is applied to the filter() function
 and is defined to filter the property (that is the field in the model to filter
 on) 'firstName'. The value to filter with is the newValue given by the
 event or an empty string ('') if the passed value is falsy (false, 0, ''
 null, undefined or NaN). Setting anyMatch to true configures the filter
 to match the value characters at any position in the store's value and by having
 caseSensitive set to false we ignore exact case matching.

 GeoExt

 GeoExt3 workshop

[image:]

Welcome to the GeoExt3 workshop, in which you'll learn how to use GeoExt3 in
your ExtJS applications.

This workshop is composed out of several modules, which usually are done in
order.

	Before diving into programming, the metainformation
 chapter has a lot of information about this workshop, the intended audience
 and how to best create solutions for the workshop.

	Afterwards we'll work through the first steps chapter, in
 which you learn about Openlayers, ExtJS and GeoExt3.

	Now that we know these libraries and frameworks, we are ready to use the
 GeoExt.component.Map in the map chapter.

	Your map may very well contain a lot of layers, these can be managed with a
 layer tree.

	The next chapter is all about vector features,
 you'll create a grid that is synced with a vector layer in the map.

	The last chapter shows other aspects of GeoExt components
 like popups, an embeddable overview map, the utility classes to talk to MapFish print servers and other parts of GeoExt.

 Metainformation

 Metainformation

In this chapter we'll provide you with some metainformation about this workshop.

In order to efficiently work through the workshop, you are advised to read
the following parts:

	General information about the workshop

	The target audience of the workshop

	The goals we try to achieve in the workshop

	How to setup your development environment so
 that you can work on the workshop tasks efficiently

	Some final notes (e.g. about the chosen structure)

Let's start with some general information about the workshop.

 About

 About

Authors

This workshop was created by the following individuals:

	Marc Jansen

	Daniel Koch

Contribute

The workshop repository can be found at https://github.com/geoext/geoext3-ws.

We look forward to external contributors. If you found an issue or have an idea
of how to improve the workshop, just
open an issue here.

Used libraries

During the workshop you will work with the following JavaScript libraries or
frameworks:

	OpenLayers (v3.13.0): http://openlayers.org/

	ExtJS (v6.0.0, GPL): https://www.sencha.com/products/extjs/,
 download

	GeoExt3 (c326b01c pre-v3.0.0): http://geoext.github.io/geoext3/

Copyright

The copyright is © GeoExt Contributors.

License

The workshop content is published under CC-BY-SA-4. The full text is available online.

GeoExt3 itself is released under the terms of the GPL v3.

 Target audience

 Target audience

This workshop is targeted at developers that want to try out the GeoExt library.

GeoExt is based on OpenLayers and ExtJS, so a bit of background in these
JavaScript libraries / frameworks doesn't hurt. It is not necessarily needed to
have a deep understanding of the base libraries, though. All examples or tasks
usually highlight the key aspects that make everything work together.

Some basic familiarity with JavaScript is assumed, but again, we will not dive
to deep into the language, so basically any interested person will be able
to understand what is going on.

In order to accomplish everything in the workshop, some OGC services (such as
WMS and WFS) will be used. We should provide you with enough written background
so you'll grasp the core of the tasks.

Still unsure if you can work through this material?

We strive to make this workshop as understandable as possible, so please try it
out! If you fail or experience problems, just tell us so: We are really looking
forward to getting feedback.

 Goals

 Goals

These are the goals we want to reach with this workshop:

	Learn the basics of GeoExt
	theoretically

	practically

	Learn how to work with the API-docs

	Learn about other places where to find help for GeoExt

	Get to know certain core classes of GeoExt

	Iteratively create an application

	Learn how to debug in case of errors

 Development environment

 Development environment

Required software

In order to complete this workshop, you will need the following software:

	A text editor, for example Atom or some other editor in
 which you feel comfortable.

	A browser, to read the workshop instructions and open up the tasks you will
 have to accomplish.

	Node.JS, so that you can run the workshop examples.
 Node.js will also install npm, which we will use to install workshop
 dependencies and to serve the workshop slides as HTML. If you are on linux,
 we have made excellent experiences with nvm
 to install various versions of Node.js.

Preparation steps

	Download the latest workshop-contens from this URL:
	https://github.com/geoext/geoext3-ws/archive/master.zip

	Extract the zip-archive into a directory of your choice.

	You should find the following files and directories in the
 geoext3-ws-master-folder:
	LICENSE.md

	package.json

	README.md

	src/

	Install the dependencies of the workshop via npm install.

	Here are some example steps for a Linux-system: # create a directory gx-ws …
 mkdir -p ~/gx-ws
 # … go there …
 cd ~/gx-ws
 # … grab the zip-archive …
 wget https://github.com/geoext/geoext3-ws/archive/master.zip
 # … unzip the archive …
 unzip master.zip
 # … change into the extracted folder
 cd geoext3-ws-master
 # Install dependencies via npm
 npm install

Starting the workshop

	Issue the following command in the directory geoext3-ws-master
 from above: npm start

	This should give you an output like below:

 Live reload server started on port: 35729
 Press CTRL+C to quit ...

 info: loading book configuration....OK
 info: load plugin gitbook-plugin-image-captionsOK
 info: load plugin gitbook-plugin-highlightOK
 info: load plugin gitbook-plugin-searchOK
 info: load plugin gitbook-plugin-sharingOK
 info: load plugin gitbook-plugin-fontsettingsOK
 info: load plugin gitbook-plugin-livereloadOK
 info: >> 6 plugins loaded
 info: start generation with website generator
 info: clean website generatorOK
 info: generation is finished

 Starting server ...
 Serving book on http://localhost:4000

	If instead you see some error like below, the workshop is likely already
 running on your system or some other application is blocking the ports
 35729 and 4000:

 ... Uhoh. Got error listen EADDRINUSE :::35729 ...
 Error: listen EADDRINUSE :::35729
 at Object.exports._errnoException (util.js:870:11)
 at exports._exceptionWithHostPort (util.js:893:20)
 at Server._listen2 (net.js:1237:14)
 at listen (net.js:1273:10)
 at Server.listen (net.js:1369:5)
 at Server.listen (/home/jansen/.gitbook/versions/2.6.7/node_modules/tiny-lr/lib/server.js:164:15)
 at Promise.apply (/home/jansen/.gitbook/versions/2.6.7/node_modules/q/q.js:1078:26)
 at Promise.promise.promiseDispatch (/home/jansen/.gitbook/versions/2.6.7/node_modules/q/q.js:741:41)
 at /home/jansen/.gitbook/versions/2.6.7/node_modules/q/q.js:1304:14
 at flush (/home/jansen/.gitbook/versions/2.6.7/node_modules/q/q.js:108:17)

 You already have a server listening on 35729
 You should stop it and try again.

Stopping the workshop

	Simply hit Ctrl-C in the terminal where you started the workshop, e.g.
 ~/gx-ws/geoext3-ws-master.

 Notes

 Notes

In this section we want to keep certain notes about this workshop. It is not a
necessary requirement to read this section if you just start with GeoExt.

In case you have questions about why we have structured the workshop as we have
done it, please continue reading.

Q: Why not as Ext.application? Why no MVC?

Why didn't you create the examples as Ext.application()? An why aren't you using the MVC pattern?

We recommend the use of Ext.application / Ext.app.Application and the use of the MVC or MVVM pattern for real-world applications. For this introductory workshop we think this would complicate stuff more than necessary.

Q: Why not with help of Sencha Cmd?

Why don't you use the Sencha Cmd for the workshop?

We use the sencha tool quite often in our daily work, but found that the
additional burden of installation steps would be distracting for the main
focus of this workshop.

 First steps

 First steps

Now that we know all the required metainformation and have set up our development environment, it is time to get started.

In this chapter we will learn 5 things:

	Where to save our exercise HTML files.

	How to include OpenLayers in our exercise.

	How to include ExtJS in our exercise.

	How to include GeoExt in our exercise.

	Where to look for more documentation.

 Hello exercise

 Hello exercise

Throughout this workshop, you will encounter various tasks, that you should
accomplish. Most of the time you will be asked to edit an HTML or JavaScript-file
and see if the result is as intended.

In order to have comparable results, you are advised to save your HTML and any
additional files inside of the src/exercise/-folder. If you followed the
instructions for setting up the development environment,
this folder will be located at:

~/gx-ws/geoext3-ws-master/src/exercise.

If you e.g. store a file named map.html inside this directory, and you are
serving the workshop as recommended, than this file can be accessed via the
following URL:

/map.html

Shall we tackle our first tiny excercise? Ok then, here we go:

Exercises

	Create a my-exercise.html HTML-file in the src/exercise/-folder, open it
 with your text editor and fill it with the template HTML from below:
template.html

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>This is a basic HTML template</title>
 </head>
 <body>
 <h1>Use this template to create your own HTML files</h1>
 </body>
</html>

	See if your file is available in a browser under the following URL:
 /my-exercise.html

	In the body of the HTML change the content of the first <h1>-element to
 read: GeoExt rocks!

	Check if any changes to the HTML file are reflected in your browser. Reload
 the URL /my-exercise.html

If everything worked, you should see something like in the following images.

[image: Our first HTML-page]Our first HTML-page
[image: Indeed, it does!]Indeed, it does!

 Please note:

In case you added more files (e.g.for upcoming tasks) to the
src/exercise/ folder and they are not instantly available under the
URL /filename.html

… then you have to stop and start the fileserving again. See the
notes on starting / stopping
(Hint: Ctrl-C or npm start)

 Hello OpenLayers

 Hello OpenLayers

Ok, we can create and edit HTML-files, and we can see the changes in our browser because all files in src/exercises/ are always available under .

Let's see how we can include OpenLayers in our page so that we can start to use it. In order to do so, we need to include a CSS and a JavaScript file.

Exercises

	See if you find a folder lib/ol/ inside of the src/exercise/-folder. It should contain two files: ol.js and ol.css

	Create a new ol-example.html from the basic template

template.html

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>This is a basic HTML template</title>
 </head>
 <body>
 <h1>Use this template to create your own HTML files</h1>
 </body>
</html>

	Change ol-example.html to include both files in the <head>. Use the below templates to include a CSS and a JavaScript file.

include-js-css.html

<!-- include a CSS stylesheet -->
<link rel="stylesheet" href="path/to/file.css" type="text/css">

<!-- include an external JavaScript file -->
<script src="path/to/file.js" type="text/javascript"></script>

	Verify that /ol-example.html loads your file.

	In the <body> of the file, add the following HTML-fragment, which includes a tiny bit of JavaScript:

simple-map.html

<div id="map" style="height: 600px"></div>
<script type="text/javascript">
 var map = new ol.Map({
 target: 'map',
 layers: [
 new ol.layer.Tile({
 source: new ol.source.MapQuest({layer: 'sat'})
 })
],
 view: new ol.View({
 center: ol.proj.fromLonLat([106.92, 47.92]),
 zoom: 4
 })
 });
</script>

	When you now reload the /ol-example.html URL, you should see an OpenLayers map centered on Ulan Bator:

[image: A very basic OpenLayers maa]A very basic OpenLayers maa

	To verify we are really looking at Ulan Bator, just change the layers to now consist an OpenStreetMap layer, which e.g. has labels and a country outline. Use the following JavaScript snippet at the appropriate place:

new ol.layer.Tile({
 source: new ol.source.OSM()
})

[image: Say "hi" to the OSM layer]Say "hi" to the OSM layer

 Hello ExtJS

 Hello ExtJS

Before we can learn how to use GeoExt, we need to see if we can use ExtJS in our page.

Again we'll need to include two resources in a HTML page to be able to use ExtJS: And again it is a CSS and a JavaScript file.

Exercises

	Create a new ext-example.html from the basic template

template.html

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>This is a basic HTML template</title>
 </head>
 <body>
 <h1>Use this template to create your own HTML files</h1>
 </body>
</html>

	Change ex-example.html to include the following two files:
	https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/classic/theme-crisp/resources/theme-crisp-all.css

	https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/ext-all.js

include-js-css.html

<!-- include a CSS stylesheet -->
<link rel="stylesheet" href="path/to/file.css" type="text/css">

<!-- include an external JavaScript file -->
<script src="path/to/file.js" type="text/javascript"></script>

	Verify that /ext-example.html loads your file.

	Does your basic page look like the one in the following image? Why does the font look so different?

[image: The template-HTML with the ExtJS resources included]The template-HTML with the ExtJS resources included

	In order to see if everything was included successfully, let's instantiate an ExtJS class. Please copy and paste the following into the <body> of the test-file:

<script>
Ext.onReady(function(){
 var win = Ext.create('Ext.window.Window', {
 width: 200,
 height: 200,
 title: 'ExtJS …',
 html: '… is easy!'
 });
 win.show();
});
</script>

	You should see an Ext.window.Window like below:

[image: ExtJS is easy]ExtJS is easy

 Hello GeoExt

 Hello GeoExt

Now that we know how to use OpenLayers and ExtJS, it's time to join these libraries. Enter GeoExt!

We'll start with the result of the last exercise, which was a basic HTML file that included the resources to ExtJS.

Exercises

	Copy the following HTML into a file hello-geoext.html in the exercises-directory:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>This is a basic HTML template</title>
 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/classic/theme-triton/resources/theme-triton-all.css" type="text/css">
 <script src="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/ext-all.js" type="text/javascript"></script>
 </head>
 <body>
 <script>
 Ext.onReady(function(){
 var win = Ext.create('Ext.window.Window', {
 width: 200,
 height: 200,
 title: 'ExtJS …',
 html: '… is easy!'
 });
 win.show();
 });
 </script>
 </body>
</html>

	Add the CSS and JavaScript for OpenLayers:

<link rel="stylesheet" href="./lib/ol/ol.css" type="text/css">
<script src="./lib/ol/ol.css" type="text/javascript"></script>

	Add the JavaScript for GeoExt: https://geoext.github.io/geoext3/master/GeoExt.js

	Most GeoExt components don't need special CSS. If you use the Popup-components, you may want to include the following CSS file: http://geoext.github.io/geoext3/master/resources/css/gx-popup.css

	Verify that /hello-geoext.html loads in your browser

Adding our first GeoExt component

Exercises

	We are now going to create an instance of GeoExt.component.Map and render it in the window we created in the previous example.

	In order to do that:
	Remove the html: '…is easy!' from the Ext.window.Window configuration object

	And add the following lines instead: // in the config object:
 layout: 'fit',
 items: [
 Ext.create('GeoExt.component.Map', {
 map: new ol.Map({
 target: 'map',
 layers: [
 new ol.layer.Tile({
 source: new ol.source.OSM()
 })
],
 view: new ol.View({
 center: ol.proj.fromLonLat([106.92, 47.92]),
 zoom: 4
 })
 })
 })
]

	Next: Please change the title of the window and make is slightly bigger.

If your example looks like the one below, everything is set up correctly!

[image: Hello GeoExt!]Hello GeoExt!

 Useful resources

 Useful resources

In order to efficiently work with all the libraries used throughout the workshop, you'll need know some other resources:

OpenLayers

Homepage: http://openlayers.org

API documentation

Use th API docs of OpenLayers to know about available classes and their properties:

	http://openlayers.org/en/v3.13.1/apidoc/

The left side of the API-docs is a list of all objects in OpenLayers. If you click on the name of an OpenLayers class there, you see the API of the object.

In the subpages you can find a list of all properties, methods and events the class provides. You should make yourself familiar with how to navigate the API docs.

Examples

Many people learn best when they see the parts of a library in action. OpenLayers has a vast amount of published online examples, which mostly focus on one aspect of the library.

	http://openlayers.org/en/v3.13.1/examples/

Browse the examples and learn how to find one that provides the information you need.

Other

	OpenLayers also has published a workshop at http://openlayers.org/workshop/.

	Common problems that may arise when using OpenLayers 3 are explained in the Frequently Asked Questions (FAQ).

	For specific questions one can ask on stackoverflow using the tag 'openlayers-3'.

ExtJS

API documentation

The quantity and quality of the ExtJS API documentation is outstanding.

	http://docs.sencha.com/extjs/6.0/6.0.0-classic/

The docs provide a list of all classes on the left and details once you click on any class. In order to understand and make use of ExtJS, it is crucial to fully grasp the documentation.

Examples

The examples for the ExtJS framework can be found here:

	http://examples.sencha.com/extjs/6.0.0/examples/

As with the API documentation, you may at first be overwhelmed at the sheer masses of examples. It is nonetheless very useful to click through some of them, as the show how to combine the classes of the framework into small working applications.

Other

	If you want to quickly check some class, you can e.g. use the Sencha Fiddle website.

	Specific questions (and answers) can be browsed in the Sencha Formums.

GeoExt

Homepage: https://geoext.github.io/geoext3/

API documentation

The GeoExt API documentation (generated with the same software as the ExtJS one) can be found here:

	http://geoext.github.io/geoext3/master/docs/

If you know your way around in The ExtJS documentation, you will easily understand the GeoExt one.

There is also a version of the API of GeoExt, which includes all the classes from the ExtJS framework:

	http://geoext.github.io/geoext3/master/docs-w-ext/

Examples

The (few) examples of the GeoExt library can be accessed from the homepage: https://geoext.github.io/geoext3/

 Summary

 Summary

This chapter gently introduced you to OpenLayers, ExtJS and GeoExt. You have learned…

	… how and where to create exercise files.

	… how to include the resources of OpenLayers.

	… how to include the resources of ExtJS.

	… how to include the resources of GeoExt.

	… where to find more information online.

The next chapter will focus on the GeoExt.component.Map which we have seen briefly in the first example we created.

 Map

 Map

This chapter will introduce you to one of the most central components in GeoExt: the GeoExt.component.Map.

Will work through the following parts to learn about this component:

	Creating a basic example

	Dissecting the parts of the example

	Explore configuration variants

 Basic example

 Basic example

We want to have a look at a fully working example first.

Exercises

	Create a new file map.html in the src/exercise-directory.

	Paste the following html-code into the file you have just created:

 <!DOCTYPE html>
 <html>
 <head>
 <meta charset="utf-8">
 <title>Exercise | GeoExt Workshop</title>
 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/classic/theme-triton/resources/theme-triton-all.css" type="text/css">
 <script src="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/ext-all.js" type="text/javascript"></script>
 <link rel="stylesheet" href="./lib/ol/ol.css" type="text/css">
 <script src="./lib/ol/ol.js" type="text/javascript"></script>
 <script src="https://geoext.github.io/geoext3/master/GeoExt.js" type="text/javascript"></script>
 </head>
 <body>
 <script>
 var map;
 Ext.onReady(function(){
 // 1) OpenLayers
 //
 // Create an instance of an OpenLayers map:
 map = new ol.Map({
 layers: [
 new ol.layer.Tile({
 source: new ol.source.OSM()
 })
],
 view: new ol.View({
 center: ol.proj.fromLonLat([106.92, 47.92]),
 zoom: 12
 })
 });

 // 2) GeoExt
 //
 // Create an instance of the GeoExt map component with that map:
 var mapComponent = Ext.create('GeoExt.component.Map', {
 map: map
 });

 // 3) Ext JS
 //
 // Create a viewport
 var vp = Ext.create('Ext.container.Viewport', {
 layout: 'fit',
 items: mapComponent
 });
 });
 </script>
 </body>
 </html>

	Verify that /map.html loads in your browser and looks like the picture below.

[image: A map component in a fullscreen viewport]A map component in a fullscreen viewport
We will now dissect the example and explain what each part does.

 Dissecting the example

 Dissecting the example

Let's look at the parts of the HTML page.

The HTML skeleton

The HTML of the page looks as follows:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Exercise | GeoExt Workshop</title>
 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/classic/theme-triton/resources/theme-triton-all.css" type="text/css">
 <script src="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/ext-all.js" type="text/javascript"></script>
 <link rel="stylesheet" href="./lib/ol/ol.css" type="text/css">
 <script src="./lib/ol/ol.js" type="text/javascript"></script>
 <script src="https://geoext.github.io/geoext3/master/GeoExt.js" type="text/javascript"></script>
 </head>
 <body>
 <script>
 </script>
 </body>
</html>

HTML5 DOCTYPE

The first line in this document is the doctype of the HTML. By specifying…

<!DOCTYPE html>

…we declare that the HTML file shall be handled as an HTML5 document. We recommend the usage of this doctype to force browsers into fixed rules of rendering the page. This eventually also reduces inconsistencies of the behaviour of the page in various browsers.

Declaration of the character set

In order to tell the browser that we have encoded our file as UTF-8, we add a <meta>-tag to the <head> of the document:

<head>
 <meta charset="utf-8">
</head>

This way we can be relatively sure that all the characters we enter into the document (e.g. German umlauts like ä, ö or ü; or Улаанбаатар) are correctly displayed when viewing the site.

CSS and JavaScript resources

Also in the <head> of the document we load external JavaScript and CSS files, so we can use our needed libraries later.

<head>
 <link rel="stylesheet" href="URL-or-relative-path-to-file" type="text/css">
 <script src="URL-or-relative-path-to-file" type="text/javascript"></script>
</head>

For this workshop it will be enough to always include the full builds of the library; and to always load them in the <head>. This technique allows us to basically forget about these resources for the course of the workshop. For a production website you would probably load the files in a different manor, and you would rather not load the versions of the libraries which contain everything. The creation of specific versions of the base libraries that only include what your application actually needs, is way beyond the scope of this workshop.

<script>-tag in the <body>

Our body of the HTML file is really, really, really minimalistic:

<body>
 <script>
 </script>
</body>

We only include one <script>-tag that will contain all the JavaScript that we need to create our map. The contents of this tag will be interpreted as JavaScript, and the code will be run as soon as the browser sees it.

JavaScript code for the map

All our code to create the full screen map lives in the <script>-tag in the HTML <body>.

Let's go through all the lines in there.

A variable named map

The first line in the example reads:

var map;

This creates a global variable named map, which (at this point) has the value undefined. Later on we will store our instance of the ol.Map in that variable. We have made it global to allow for easier debugging (e.g. in the developer tools of your browser). For the workshop it is OK to create a lot of global variables for stuff you want to examine later on; in production sites it usually frowned upon.

Passing a function to Ext.onReady

The next line reads:

Ext.onReady(function(){
 // some other lines we do not care about now
});

These lines pass an anonymous (e.g. unnamed) function to the method Ext.onReady. This method will execute the passed function as soon as the Document is ready, e.g. External resources have loaded and the DOM (Document Object Model) of the page is ready to be manipulated.

Behind the curtains, when we create instances of some Ext classes, they will eventually need to modify the DOM. In order to run into problems when such changes happen to early (remember, all code in the <script> tag is executed as soon as it is being read), we wrap the real code to actually create ExtJS components into a function. We then simply tell ExtJS to delay the real work to a later time, when everything is ready.

Let's have a look at the parts inside this function.

Creating an ol.Map

First we want to create an instance of an ol.Map:

map = new ol.Map({
 layers: [
 new ol.layer.Tile({
 source: new ol.source.OSM()
 })
],
 view: new ol.View({
 center: ol.proj.fromLonLat([106.92, 47.92]),
 zoom: 12
 })
});

These lines create an OpenLayers map and configure it with a view that is centered on Ulan Bator and that has one layer showing pre-rendered tiles from the OpenStreetMap project.

You should already be slightly familiar with OpenLayers and can basically use any map that works without GeoExt.

Since we did not write var map = …, the assignment will happen to the global variable map, that we declared in the first line of the script-tag. You can easily debug the OpenLayers map this way.

Creating a GeoExt.component.Map

Next we use the method Ext.create with two arguments: the name of the class to create, and a configuration object with properties for the instance.

var mapComponent = Ext.create('GeoExt.component.Map', {
 map: map
});

In plain English this line could read

Please create an instance of the class GeoExt.component.Map and ensure that it is configured with the OpenLayers map I have stored in the variable map. Once you have done that, please store this instance in a variable mapComponent.

After these lines have executed, we now have two variables, one holding the plain OpenLayers map (map), and one that is named mapComponent which contains an instance of a GeoExt class; and this instance knows about the OpenLayers map.

Creating a Ext.Viewport

The final four lines in the block read:

var vp = Ext.create('Ext.container.Viewport', {
 layout: 'fit',
 items: mapComponent
});

Again we use Ext.create to build an instance of a class, this time of the Ext.container.Viewport class. From the ExtJS API docs:

A specialized container representing the viewable application area (the browser viewport).

The Viewport renders itself to the document body, and automatically sizes itself to the size of the browser viewport and manages window resizing. There may only be one Viewport created in a page.

(source)

This viewport will be as big as the browser viewport. All it's children (configured via the items-key) will be layed out according to the fit-layout. This layout ensures that the child component (in our case the mapComponent) will be as big as the viewport itself.

Try to resize your browser window and see that the viewport (and the containing map component) always fill out the full area of the browser window.

Next steps

Let's look at various variants to configure the three parts of our map.

 Configuration variants

 Configuration variants

This chapter looks at our possibilities to customize the appearance and behaviour of the map.

Configuring aspects of OpenLayers

As you have seen, we have simply created an instance of ol.Map and passed it to the GeoExt.component.Map. If we configure the ol.Map differently, the changes should be reflected in the final application.

Exercises

Change the following aspects of the OpenLayers map:

	Set a different map center.

	Initially zoom to another region.

	Add more layers to the map. Try the layers from these WMS capabilities for example:
	http://ows.terrestris.de/osm/service?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetCapabilities

	http://ows.terrestris.de/osm-gray/service?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetCapabilities

	Add another control. Try these, for example:
	ol.control.ScaleLine

	ol.control.MousePosition

Configuring aspects of ExtJS

Change the following aspects of the extJS components:

	Use another layout for the viewport. Just remember that you probably need to change two places:
	The layout config of the viewport.

	And depending on the chosen layout, children (our map-component) may need new properties.

	Wrap the GeoExt.component.Map in a panel with a title.

Configuring aspects of GeoExt

Of course you can also change aspects directly via GeoExt:

	Set the center of the map, but this time with GeoExt.

	Add a layer with GeoExt.

 Summary

 Summary

This chapter has shown you how to use the GeoExt.component.Map. We first started with a working example, that was the dissected in great detail. You have then learned how to configure your application by changing properties of OpenLayers-, ExtJS- and GeoExt-objects.

The next chapter will now introduce a component to deal with the possibly hierarchical structure of layers in the tree: we want to add a layer-tree.

 Layer tree

 Layer tree

Now that we have a map-component in an ExtJS layout, we naturally want to add more layers to the map. But when we have more than one layer in the OpenLayers map, we also may want to include some component to handle the individual visibility and the order of layers in the map. As OpenLayers does not provide a control to influence these properties, we have to create our own component.

GeoExt wants to help here by providing the necessary parts to create a Tree of the layers in the map-component.

Let's try to add a layer tree.

 Prepare layout

 Prepare layout

The previous chapter started from the following template, which we now want to recreate.

Exercises

	Please create a file map.html in the src/erxercises directory and paste the following:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Exercise | GeoExt Workshop</title>
 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/classic/theme-triton/resources/theme-triton-all.css" type="text/css">
 <script src="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/ext-all.js" type="text/javascript"></script>
 <link rel="stylesheet" href="./lib/ol/ol.css" type="text/css">
 <script src="./lib/ol/ol.js" type="text/javascript"></script>
 <script src="https://geoext.github.io/geoext3/master/GeoExt.js" type="text/javascript"></script>
 </head>
 <body>
 <script>
var map;
Ext.onReady(function(){
 // 1) OpenLayers
 //
 // Create an instance of an OpenLayers map:
 map = new ol.Map({
 layers: [
 new ol.layer.Tile({
 source: new ol.source.OSM()
 })
],
 view: new ol.View({
 center: ol.proj.fromLonLat([106.92, 47.92]),
 zoom: 12
 })
 });

 // 2) GeoExt
 //
 // Create an instance of the GeoExt map component with that map:
 var mapComponent = Ext.create('GeoExt.component.Map', {
 map: map
 });

 // 3) Ext JS
 //
 // Create a viewport
 var vp = Ext.create('Ext.container.Viewport', {
 layout: 'fit',
 items: mapComponent
 });
});
 </script>
 </body>
</html>

	We want to change the layout of the viewport as follows:

var vp = Ext.create('Ext.container.Viewport', {
 layout: 'border',
 items: [
 mapComponent
]
});

	In order to be usable in a border-layout, one child component needs to have the region-property set to center:

var mapComponent = Ext.create('GeoExt.component.Map', {
 map: map,
 region: 'center'
});

	If you apply the above changes, your application should render again in the browser, but since we only have one component in the border-layout, you'll not notice a visual difference.

	Let's first add a placeholder panel where we want to add the layer tree:

var layerTreePanel = Ext.create('Ext.panel.Panel', {
 title: 'Layers of the application',
 width: 300,
 region: 'west'
});
// … this panel also needs to be added to the viewport
var vp = Ext.create('Ext.container.Viewport', {
 layout: 'border',
 items: [
 mapComponent,
 layerTreePanel
]
});

	Your application should now look like the following:

[image: Our placeholder panel in the viewport]Our placeholder panel in the viewport

 Create a TreePanel

 Create a TreePanel

We now have the layout prepared and simply need to switch the contents of the west-panel.

Since we want to use a tree to eventually control the layers of the map, we'll use an Ext.tree.Panel instead of the simple panel.

Exercises

	Next, we'll switch out the Ext.panel.Panel against a dedicated Ext.tree.Panel. If we look at the documentation for the tree-panel, you'll see a very basic example, which you please add to the viewport instead of our placeholder.

	The example from the above page looks like this:

var store = Ext.create('Ext.data.TreeStore', {
 root: {
 expanded: true,
 children: [
 { text: 'detention', leaf: true },
 { text: 'homework', expanded: true, children: [
 { text: 'book report', leaf: true },
 { text: 'algebra', leaf: true}
] },
 { text: 'buy lottery tickets', leaf: true }
]
 }
});

Ext.create('Ext.tree.Panel', {
 title: 'Simple Tree',
 width: 200,
 height: 150,
 store: store,
 rootVisible: false,
 renderTo: Ext.getBody()
});

	Try to understand what each line of the above code does and see which lines you need to change or remove, so that you can use the tree in our layout.

	

Hints

	Some hints (in case you have trouble getting it to work)
	The store — as complicated as it looks at first — can be left as is, you don't need to change something here.

	The return value of the Ext.create('Ext.tree.Panel', /**/) call is currently ignored. You should try to save it in a variable (probably the one from our basic setup layerTreePanel).

	The height of the tree-panel is unnecessary, we want to put the panel in the west region, which has full height by default. Remove the height-property.

	The renderTo-configuration of the tree-panel is also fine for the ExtJS standalone example, but bad for our combination setup. In our case, the viewport takes care of where to actually render the tree. Remove the renderTo-property.

	The final result should look like this:

[image: The copy and pasted Ext-example in our viewport]The copy and pasted Ext-example in our viewport

	

Solution

	For reference, here is the full code of the store, tree and viewport that lead to the above picture:

var store = Ext.create('Ext.data.TreeStore', {
 root: {
 expanded: true,
 children: [
 { text: 'detention', leaf: true },
 { text: 'homework', expanded: true, children: [
 { text: 'book report', leaf: true },
 { text: 'algebra', leaf: true}
] },
 { text: 'buy lottery tickets', leaf: true }
]
 }
});

var layerTreePanel = Ext.create('Ext.panel.Panel', {
 title: 'Layers of the application',
 width: 300,
 region: 'west',
 store: store,
 rootVisible: false
});

var vp = Ext.create('Ext.container.Viewport', {
 layout: 'border',
 items: [
 mapComponent,
 layerTreePanel
]
});

 Assign LayersTree store

 Assign LayersTree store

Instead of the hard-coded hierarchical list of things in the tree, we now want to link the tree with our map.

In order to do this, we need to change the store that is used for the tree. Instead of the all-purpose Ext.data.TreeStore, we'll use the special GeoExt class GeoExt.data.store.LayersTree

Exercises

	If you haven't done already, set up a file called map.html in the src/exercises directory and paste the following contents:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Exercise | GeoExt Workshop</title>
 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/classic/theme-triton/resources/theme-triton-all.css" type="text/css">
 <script src="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/ext-all.js" type="text/javascript"></script>
 <link rel="stylesheet" href="./lib/ol/ol.css" type="text/css">
 <script src="./lib/ol/ol.js" type="text/javascript"></script>
 <script src="https://geoext.github.io/geoext3/master/GeoExt.js" type="text/javascript"></script>
 </head>
 <body>
 <script>
var map;
Ext.onReady(function(){
 // 1) OpenLayers
 //
 // Create an instance of an OpenLayers map:
 map = new ol.Map({
 layers: [
 new ol.layer.Tile({
 source: new ol.source.OSM()
 })
],
 view: new ol.View({
 center: ol.proj.fromLonLat([106.92, 47.92]),
 zoom: 12
 })
 });

 // 2) GeoExt
 //
 // Create an instance of the GeoExt map component with that map:
 var mapComponent = Ext.create('GeoExt.component.Map', {
 map: map,
 region: 'center'
 });

 var store = Ext.create('Ext.data.TreeStore', {
 root: {
 expanded: true,
 children: [
 { text: 'detention', leaf: true },
 { text: 'homework', expanded: true, children: [
 { text: 'book report', leaf: true },
 { text: 'algebra', leaf: true}
] },
 { text: 'buy lottery tickets', leaf: true }
]
 }
 });

 var layerTreePanel = Ext.create('Ext.tree.Panel', {
 title: 'Layers of the application',
 width: 300,
 region: 'west',
 store: store,
 rootVisible: false
 });

 // 3) Ext JS
 //
 // Create a viewport
 var vp = Ext.create('Ext.container.Viewport', {
 layout: 'border',
 items: [
 mapComponent,
 layerTreePanel
]
 });
});
 </script>
 </body>
</html>

	Make yourself familiar with the GeoExt.data.store.LayersTree class by studying the following API-docs: http://geoext.github.io/geoext3/master/docs/#!/api/GeoExt.data.store.LayersTree

	Create an instance of the GeoExt.data.store.LayersTree class and pass it the following configuration object:

{
 layerGroup: /* the top level layer group of the map */
}

	Study the API docs of ol.Map to get the appropriate LayerGroup: http://openlayers.org/en/v3.13.1/apidoc/ol.Map.html

	If everything works fine, you should see a tree with one (currently unlabeled) leaf. Next to the leaf you find a checkbox, that reflects the overall visibility of the layer.

[image: The working but currently unlabeled tree]The working but currently unlabeled tree

	Study the GeoExt.data.store.LayersTree and find out why there is no label next to the tree-element.

	Add more layers to the map and see if they all appear in the map and in the tree. Take e.g. the following WMS:

url: http://ows.terrestris.de/osm/service
layers: OSM-WMS

	Read the documentation for the Ext class Ext.tree.plugin.TreeViewDragDrop. What happens if you add this plugin to the tree?

	Your application should now e.g. look like this:

[image: The tree in the application]The tree in the application

	

Solution

	For reference, here are code-snippets for the relevant parts of the code:

// layers should have a property for their name (configurable)
new ol.layer.Tile({
 source: new ol.source.OSM(),
 name: 'OpenStreetMap'
});

// Creating an appropriate treestore
var treeStore = Ext.create('GeoExt.data.store.LayersTree', {
 layerGroup: map.getLayerGroup()
});

// Use the store in the tree and also load plugin
var layerTreePanel = Ext.create('Ext.tree.Panel', {
 title: 'Layers of the application',
 width: 300,
 region: 'west',
 store: treeStore,
 rootVisible: false,
 viewConfig: {
 plugins: { ptype: 'treeviewdragdrop' }
 }
});

 Summary

 Summary

This chapter taught you how to make use of the class GeoExt.data.store.LayersTree to create a tree showing the layers of the application.

The tree-panel correctly reorders the layer order in the map if the order changes (via drag and drop) in the tree. All tree-leafs have a checkbox to control the visibility of the connected layer.

 Feature grid

 Feature grid

In this chapter we want to add a grid component to the application, which shows a row for every feature of a vector layer. We also want to add basic interaction between the grid of features and the map.

We will start in the usual way by setting up an ExtJS placeholder component which we will then gradually be enhanced or replaced.

Head over to the prepare layout chapter, in which we'll add another visual component to our application.

 Prepare layout

 Prepare layout

We want to add a grid panel to our basic map application now.

Exercises

	Prepare the map.html file to contain the following code. This is basically the result of the previous chapters:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Exercise | GeoExt Workshop</title>
 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/classic/theme-triton/resources/theme-triton-all.css" type="text/css">
 <script src="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/ext-all.js" type="text/javascript"></script>
 <link rel="stylesheet" href="./lib/ol/ol.css" type="text/css">
 <script src="./lib/ol/ol.js" type="text/javascript"></script>
 <script src="https://geoext.github.io/geoext3/master/GeoExt.js" type="text/javascript"></script>
 </head>
 <body>
 <script>
var map;
Ext.onReady(function(){
 // 1) OpenLayers
 //
 // Create an instance of an OpenLayers map:
 map = new ol.Map({
 layers: [
 new ol.layer.Tile({
 source: new ol.source.OSM(),
 name: 'OpenStreetMap'
 }),
 new ol.layer.Tile({
 source: new ol.source.TileWMS({
 url: 'http://ows.terrestris.de/osm/service',
 params: {
 layers: 'OSM-WMS'
 }
 }),
 name: 'OSM WMS (terrestris)'
 })
],
 view: new ol.View({
 center: ol.proj.fromLonLat([106.92, 47.92]),
 zoom: 12
 })
 });

 // 2) GeoExt
 //
 // Create an instance of the GeoExt map component with that map:
 var mapComponent = Ext.create('GeoExt.component.Map', {
 map: map,
 region: 'center'
 });

 var treeStore = Ext.create('GeoExt.data.store.LayersTree', {
 layerGroup: map.getLayerGroup()
 });

 var layerTreePanel = Ext.create('Ext.tree.Panel', {
 title: 'Layers of the application',
 width: 300,
 region: 'west',
 store: treeStore,
 rootVisible: false,
 viewConfig: {
 plugins: { ptype: 'treeviewdragdrop' }
 }
 });

 // 3) Ext JS
 //
 // Create a viewport
 var vp = Ext.create('Ext.container.Viewport', {
 layout: 'border',
 items: [
 mapComponent,
 layerTreePanel
]
 });
});
 </script>
 </body>
</html>

	If you open this file in a browser (/map.html), the application should look like in the following image:

[image: Our starting point]Our starting point

	We want to have a grid in the south, so let's start with the basic example from the ExtJS Grid documentation:

Ext.create('Ext.data.Store', {
 storeId: 'simpsonsStore',
 fields:['name', 'email', 'phone'],
 data: [
 { name: 'Lisa', email: 'lisa@simpsons.com', phone: '555-111-1224' },
 { name: 'Bart', email: 'bart@simpsons.com', phone: '555-222-1234' },
 { name: 'Homer', email: 'homer@simpsons.com', phone: '555-222-1244' },
 { name: 'Marge', email: 'marge@simpsons.com', phone: '555-222-1254' }
]
});

Ext.create('Ext.grid.Panel', {
 title: 'Simpsons',
 store: Ext.data.StoreManager.lookup('simpsonsStore'),
 columns: [
 { text: 'Name', dataIndex: 'name' },
 { text: 'Email', dataIndex: 'email', flex: 1 },
 { text: 'Phone', dataIndex: 'phone' }
],
 height: 200,
 width: 400,
 renderTo: Ext.getBody()
});

	Instead of using a storeId and then later Ext.data.StoreManager.lookup('simpsonsStore'), we will simply use a variable to be able to reference the store. Since we will put the panel in our border layout, we do not need the renderTo and width properties. Don't forget to assign the region: south. We'll also save the panel in a variable. Your code should look roughly like the following:

	

Hint

var featureStore = Ext.create('Ext.data.Store', {
 fields:['name', 'email', 'phone'],
 data: [
 { name: 'Lisa', email: 'lisa@simpsons.com', phone: '555-111-1224' },
 { name: 'Bart', email: 'bart@simpsons.com', phone: '555-222-1234' },
 { name: 'Homer', email: 'homer@simpsons.com', phone: '555-222-1244' },
 { name: 'Marge', email: 'marge@simpsons.com', phone: '555-222-1254' }
]
});

var featurePanel = Ext.create('Ext.grid.Panel', {
 title: 'Simpsons',
 store: featureStore,
 columns: [
 { text: 'Name', dataIndex: 'name' },
 { text: 'Email', dataIndex: 'email', flex: 1 },
 { text: 'Phone', dataIndex: 'phone' }
],
 height: 200,
 region: 'south'
});

	Once we have added the featurePanel to the viewport, our application should look like in the following image:

[image: The prepared ExtJS layout]The prepared ExtJS layout

	Of course we also want to have a vector layer in the map, whose features we want in the grid later.

	Please create a new ol.layer.Vector, that has a ol.source.GeoJSON configured and loads the local data in src/exercises/data/aimag-centers.json. Please style the points with red circles. Please also zoom the map a little bit further out; zoom level 4 should be fine.

	

Hint

var redStyle = new ol.style.Style({
 image: circle = new ol.style.Circle({
 fill: new ol.style.Fill({
 color: 'rgba(220, 0, 0, 0.5)'
 }),
 stroke: new ol.style.Stroke({
 color: 'rgba(220, 0, 0, 0.8)',
 width: 3
 }),
 radius: 8
 })
})
var vectorLayer = new ol.layer.Vector({
 source: new ol.source.Vector({
 url: 'data/aimag-centers.json',
 format: new ol.format.GeoJSON()
 }),
 name: 'Aimag',
 style: redStyle
});

	Our application should now look like in the following image:

[image: Our map now also shows the 'Aimag']Our map now also shows the 'Aimag'

 Create a feature grid

 Create a feature grid

Now it's time to change the grid to no longer show static data from The Simpsons, but instead one row for every feature of the vector layer.

Exercises

	Please set up src/map.html to contain the following lines:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Exercise | GeoExt Workshop</title>
 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/classic/theme-triton/resources/theme-triton-all.css" type="text/css">
 <script src="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/ext-all.js" type="text/javascript"></script>
 <link rel="stylesheet" href="./lib/ol/ol.css" type="text/css">
 <script src="./lib/ol/ol.js" type="text/javascript"></script>
 <script src="https://geoext.github.io/geoext3/master/GeoExt.js" type="text/javascript"></script>
 </head>
 <body>
 <script>
var map;
Ext.onReady(function(){
 var redStyle = new ol.style.Style({
 image: circle = new ol.style.Circle({
 fill: new ol.style.Fill({
 color: 'rgba(220, 0, 0, 0.5)'
 }),
 stroke: new ol.style.Stroke({
 color: 'rgba(220, 0, 0, 0.8)',
 width: 3
 }),
 radius: 8
 })
 })
 var vectorLayer = new ol.layer.Vector({
 source: new ol.source.Vector({
 url: 'data/aimag-centers.json',
 format: new ol.format.GeoJSON()
 }),
 name: 'Aimag',
 style: redStyle
 });
 // 1) OpenLayers
 //
 // Create an instance of an OpenLayers map:
 map = new ol.Map({
 layers: [
 new ol.layer.Tile({
 source: new ol.source.OSM(),
 name: 'OpenStreetMap'
 }),
 new ol.layer.Tile({
 source: new ol.source.TileWMS({
 url: 'http://ows.terrestris.de/osm/service',
 params: {
 layers: 'OSM-WMS'
 }
 }),
 name: 'OSM WMS (terrestris)'
 }),
 vectorLayer
],
 view: new ol.View({
 center: ol.proj.fromLonLat([106.92, 47.92]),
 zoom: 4
 })
 });

 // 2) GeoExt
 //
 // Create an instance of the GeoExt map component with that map:
 var mapComponent = Ext.create('GeoExt.component.Map', {
 map: map,
 region: 'center'
 });

 var treeStore = Ext.create('GeoExt.data.store.LayersTree', {
 layerGroup: map.getLayerGroup()
 });

 var layerTreePanel = Ext.create('Ext.tree.Panel', {
 title: 'Layers of the application',
 width: 300,
 region: 'west',
 store: treeStore,
 rootVisible: false,
 viewConfig: {
 plugins: { ptype: 'treeviewdragdrop' }
 }
 });

 var featureStore = Ext.create('Ext.data.Store', {
 fields:['name', 'email', 'phone'],
 data: [
 { name: 'Lisa', email: 'lisa@simpsons.com', phone: '555-111-1224' },
 { name: 'Bart', email: 'bart@simpsons.com', phone: '555-222-1234' },
 { name: 'Homer', email: 'homer@simpsons.com', phone: '555-222-1244' },
 { name: 'Marge', email: 'marge@simpsons.com', phone: '555-222-1254' }
]
 });

 var featurePanel = Ext.create('Ext.grid.Panel', {
 title: 'Simpsons',
 store: featureStore,
 columns: [
 { text: 'Name', dataIndex: 'name' },
 { text: 'Email', dataIndex: 'email', flex: 1 },
 { text: 'Phone', dataIndex: 'phone' }
],
 height: 200,
 region: 'south'
 });

 // 3) Ext JS
 //
 // Create a viewport
 var vp = Ext.create('Ext.container.Viewport', {
 layout: 'border',
 items: [
 mapComponent,
 layerTreePanel,
 featurePanel
]
 });
});
 </script>
 </body>
</html>

	Instead of a generic Ext.data.Store, use a GeoExt.data.store.Features. Look up the API documentation on http://geoext.github.io/geoext3/master/docs for further details.

	Make sure you reference your vector layer and the map to work on when configuring the store.

	

Hint

var featureStore = Ext.create('GeoExt.data.store.Features', {
 layer: vectorLayer,
 map: map
});

	Next we need to configure the columns of the Ext.grid.Panel. Look up the attributes of the GeoJSON and change the appropriate configuration in the config object for the Ext.grid.Panel.

	

Hint

// E.g.
columns: [
 {text: 'Name', dataIndex: 'NAME', flex: 3},
 {text: 'Population', dataIndex: 'POP', flex: 1},
 {text: 'Id', dataIndex: 'AIMAG_ID', flex: 1}
]

	Additionally we can use the GeoExt.grid.column.Symbolizer class of GeoExt to include the styling of the feature in the grid. Add the following line to your columns definition:

{xtype: 'gx_symbolizercolumn', width: 30}

	When a row is selected in the grid, it is visually highlighted. Wouldn't it be nice if the feature on the map would also have a different style once its associated row is selected?

	Assign a selectionchange listener on the grid and ensure that the correct feature is highlighted in the map. Hint: Create a new style and in the callback reset the style for every feature and reassign the new style to the to the currently selected feature. Use console.log(arguments) to see what you have been passed and how you can get the feature from the passed arguments.

	Bonus: Once the feature has a different style on the map, it would be nice if we could see that style in the grid, right? Change the selectionchange listener to also update the grid once the style of the feature has changed.

	

Hint

var featureGrid = Ext.create('Ext.grid.Panel', {
 store: featureStore,
 region: 'south',
 title: 'Centers of Mongolian Aimag',
 columns: [
 {xtype: 'gx_symbolizercolumn', width: 30},
 {text: 'Name', dataIndex: 'NAME', flex: 3},
 {text: 'Population', dataIndex: 'POP', flex: 1},
 {text: 'AIMAG_ID', dataIndex: 'AIMAG_ID', flex: 1}
],
 listeners: {
 selectionchange: function(sm, selected) {
 // reset all selections
 featureStore.each(function(rec) {
 rec.getFeature().setStyle(null);
 });
 // highlight grid selection in map
 Ext.each(selected, function(rec) {
 rec.getFeature().setStyle(blueStyle);
 });
 // update the grid rendering of the geometry
 sm.view.refresh();
 }
 },
 height: 300
});

	Your application should now roughly look like depicted below:

[image: The application with a feature grid]The application with a feature grid

 Summary

 Summary

This chapter has taught you a lot:

	We learned how to create and use the GeoExt.data.store.Features class and configure it with a layer and a map.

	We learned that such stores can be an in place replacement for Ext.data.Store, e.g. to display the contained data in a grid.

	We learned about GeoExt.grid.column.Symbolizer that can be used to render feature symbolizers in grids.

	We also have seen how convenient it is to use event listeners to update the visual representation of your map (the selectionchange listener).

The next and final chapter will briefly introduce you to some other GeoExt components.

 Popups, Overview map & other components

 Popups, Overview & more

GeoExt has some more components and classes that we didn't touch so far. This chapter wants to show some other aspects of GeoExt. However, we cannot go through every class in detail and will only barely touch all the possibilities that GeoExt provides.

We will enhance our current application with two concrete usages of GeoExt functionality: an embedded overview-map and popups for hovered locations.

Furthermore we want to give a short theoretical outlook for possible enhancements of your applications. You can then explore these on your own.

Let's start with adding popups for hovered coordinates, shall we?

 Popup

 Popups

In this chapter we want to add short informative popups on the map. We will open the popup when the mouse lasts for a certain amount of time at a specific location. Inside the popup we show the formatted coordinates of the hover-location. To do this we will make use of a GeoExt event on the GeoExt.component.Map and of the class GeoExt.component.Popup.

Exercises

	Prepare the map.html file to contain the following code. This is basically the result of the previous chapters:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Exercise | GeoExt Workshop</title>
 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/classic/theme-triton/resources/theme-triton-all.css" type="text/css">
 <script src="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/ext-all.js" type="text/javascript"></script>
 <link rel="stylesheet" href="./lib/ol/ol.css" type="text/css">
 <script src="./lib/ol/ol.js" type="text/javascript"></script>
 <script src="https://geoext.github.io/geoext3/master/GeoExt.js" type="text/javascript"></script>
 </head>
 <body>
 <script>
var map;
Ext.onReady(function(){

 var redStyle = new ol.style.Style({
 image: circle = new ol.style.Circle({
 fill: new ol.style.Fill({
 color: 'rgba(220, 0, 0, 0.5)'
 }),
 stroke: new ol.style.Stroke({
 color: 'rgba(220, 0, 0, 0.8)',
 width: 3
 }),
 radius: 8
 })
 });
 var blueStyle = new ol.style.Style({
 image: circle = new ol.style.Circle({
 fill: new ol.style.Fill({
 color: 'rgba(0, 0, 220, 0.5)'
 }),
 stroke: new ol.style.Stroke({
 color: 'rgba(0, 0, 220, 0.8)',
 width: 3
 }),
 radius: 8
 })
 })

 var vectorLayer = new ol.layer.Vector({
 source: new ol.source.Vector({
 url: 'data/aimag-centers.json',
 format: new ol.format.GeoJSON()
 }),
 name: 'Aimag',
 style: redStyle
 });

 // 1) OpenLayers
 //
 // Create an instance of an OpenLayers map:
 map = new ol.Map({
 layers: [
 new ol.layer.Tile({
 source: new ol.source.OSM(),
 name: 'OpenStreetMap'
 }),
 new ol.layer.Tile({
 source: new ol.source.TileWMS({
 url: 'http://ows.terrestris.de/osm/service',
 params: {
 layers: 'OSM-WMS'
 }
 }),
 name: 'OSM WMS (terrestris)'
 }),
 vectorLayer
],
 view: new ol.View({
 center: ol.proj.fromLonLat([106.92, 47.92]),
 zoom: 4
 })
 });

 // 2) GeoExt
 //
 // Create an instance of the GeoExt map component with that map:
 var mapComponent = Ext.create('GeoExt.component.Map', {
 map: map,
 region: 'center'
 });

 var treeStore = Ext.create('GeoExt.data.store.LayersTree', {
 layerGroup: map.getLayerGroup()
 });

 var layerTreePanel = Ext.create('Ext.tree.Panel', {
 title: 'Layers of the application',
 width: 300,
 region: 'west',
 store: treeStore,
 rootVisible: false,
 viewConfig: {
 plugins: { ptype: 'treeviewdragdrop' }
 }
 });

 var featureStore = Ext.create('GeoExt.data.store.Features', {
 layer: vectorLayer,
 map: map
 });
 var featureGrid = Ext.create('Ext.grid.Panel', {
 store: featureStore,
 region: 'south',
 title: 'Centers of Mongolian Aimag',
 columns: [
 {xtype: 'gx_symbolizercolumn', width: 30},
 {text: 'Name', dataIndex: 'NAME', flex: 3},
 {text: 'Population', dataIndex: 'POP', flex: 1},
 {text: 'AIMAG_ID', dataIndex: 'AIMAG_ID', flex: 1}
],
 listeners: {
 selectionchange: function(sm, selected) {
 // reset all selections
 featureStore.each(function(rec) {
 rec.getFeature().setStyle(null);
 });
 // highlight grid selection in map
 Ext.each(selected, function(rec) {
 rec.getFeature().setStyle(blueStyle);
 });
 // update the grid rendering of the geometry
 sm.view.refresh();
 }
 },
 height: 300
 });

 // 3) Ext JS
 //
 // Create a viewport
 var vp = Ext.create('Ext.container.Viewport', {
 layout: 'border',
 items: [
 mapComponent,
 layerTreePanel,
 featureGrid
]
 });
});
 </script>
 </body>
</html>

	If you open this file in a browser (/map.html), the application should look like in the following image:

[image: Our starting point]Our starting point

	For popups to look right, we need some CSS. Include the following in the <head> of the page:

<link rel="stylesheet" href="http://geoext.github.io/geoext3/master/resources/css/gx-popup.css" type="text/css">
<style>
.gx-popup p {
 padding: 5px 5px 0 5px;
 border-radius: 7px;
 background-color: rgba(255,255,255,0.85);
 border: 3px solid white;
 margin: 0;
 text-align: center;
}
</style>

	Configure the existing GeoExt.component.Map with pointerRest: true. Only if this configuration is true, the map-component will emit the pointerrest & pointerrestout events.

	Read the documentation for pointerrest & pointerrestout

	Register an event-listener on pointerrest that logs the hovered coordinate. Use the OpenLayers utility methods ol.coordinate.toStringHDMS and ol.proj.transform on the evt.coordinate to format the coordinate.

	

Hint

var mapComponent = Ext.create('GeoExt.component.Map', {
 map: map,
 region: 'center',
 pointerRest: true
});
mapComponent.on('pointerrest', function(evt) {
 var coordinate = evt.coordinate;
 var lonlat = ol.proj.transform(coordinate, 'EPSG:3857', 'EPSG:4326')
 var hdms = ol.coordinate.toStringHDMS(lonlat);
 console.log(hdms);
});

	Once you have the above logging of the coordinate in place, we can now create a popup.

	Instantiate the class GeoExt.component.Popup and configure it with your map. You should also provide a width. Store the popup in an accessible variable; var popup is a good choice.

	Inside of the configured callback on pointerrest we now want to update the HTML of the popup (method setHtml) and reposition it at the coordinate (method position, pass the coordinates in the view projection). Finally, show the popup.

	

Hint

mapComponent.on('pointerrest', function(evt) {
 var coordinate = evt.coordinate;
 var lonlat = ol.proj.transform(coordinate, 'EPSG:3857', 'EPSG:4326')
 var hdms = ol.coordinate.toStringHDMS(lonlat);
 popup.setHtml('<p>' + hdms + '</p>');
 popup.position(coordinate);
 popup.show();
});

	You may notice that the popup stays in place if the mouse leaves the map viewport, which is undesired in most of the cases. Use the event pointerrestout to hide the popup whenever the mouse leaves the map.

	

Hint

mapComponent.on('pointerrestout', popup.hide, popup);

	Congratulations, you can now happily hover anywhere on the map and be greeted with the hovered coordinate:

[image: A popup for a hovered location]A popup for a hovered location

 Overview map

 Overview map

Especially when zoomed in, it can be hard to understand the extent of the mappanel. Overview-maps, which show the extent of the main map on a smaller scale can be very useful then. GeoExt comes with a useful component to create overviews: GeoExt.component.OverviewMap.

Exercises

	We'll start again with the code of map.html from the previous sections. It's already some lines long:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Exercise | GeoExt Workshop</title>
 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/classic/theme-triton/resources/theme-triton-all.css" type="text/css">
 <script src="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/ext-all.js" type="text/javascript"></script>
 <link rel="stylesheet" href="./lib/ol/ol.css" type="text/css">
 <link rel="stylesheet" href="http://geoext.github.io/geoext3/master/resources/css/gx-popup.css" type="text/css">
 <script src="./lib/ol/ol.js" type="text/javascript"></script>
 <script src="https://geoext.github.io/geoext3/master/GeoExt.js" type="text/javascript"></script>
 <style>
.gx-popup p {
 padding: 5px 5px 0 5px;
 border-radius: 7px;
 background-color: rgba(255,255,255,0.85);
 border: 3px solid white;
 margin: 0;
 text-align: center;
}
 </style>
 </head>
 <body>
 <script>
var map;
Ext.onReady(function(){

 var redStyle = new ol.style.Style({
 image: circle = new ol.style.Circle({
 fill: new ol.style.Fill({
 color: 'rgba(220, 0, 0, 0.5)'
 }),
 stroke: new ol.style.Stroke({
 color: 'rgba(220, 0, 0, 0.8)',
 width: 3
 }),
 radius: 8
 })
 });
 var blueStyle = new ol.style.Style({
 image: circle = new ol.style.Circle({
 fill: new ol.style.Fill({
 color: 'rgba(0, 0, 220, 0.5)'
 }),
 stroke: new ol.style.Stroke({
 color: 'rgba(0, 0, 220, 0.8)',
 width: 3
 }),
 radius: 8
 })
 })

 var vectorLayer = new ol.layer.Vector({
 source: new ol.source.Vector({
 url: 'data/aimag-centers.json',
 format: new ol.format.GeoJSON()
 }),
 name: 'Aimag',
 style: redStyle
 });

 // 1) OpenLayers
 //
 // Create an instance of an OpenLayers map:
 map = new ol.Map({
 layers: [
 new ol.layer.Tile({
 source: new ol.source.OSM(),
 name: 'OpenStreetMap'
 }),
 new ol.layer.Tile({
 source: new ol.source.TileWMS({
 url: 'http://ows.terrestris.de/osm/service',
 params: {
 layers: 'OSM-WMS'
 }
 }),
 name: 'OSM WMS (terrestris)'
 }),
 vectorLayer
],
 view: new ol.View({
 center: ol.proj.fromLonLat([106.92, 47.92]),
 zoom: 4
 })
 });

 // 2) GeoExt
 //
 // Create an instance of the GeoExt map component with that map:
 var mapComponent = Ext.create('GeoExt.component.Map', {
 map: map,
 region: 'center',
 pointerRest: true,
 pointerRestInterval: 750,
 pointerRestPixelTolerance: 5
 });

 var popup = Ext.create('GeoExt.component.Popup', {
 map: map,
 width: 200
 });

 // Add a pointerrest handler to the map component to render the popup.
 mapComponent.on('pointerrest', function(evt) {
 var coordinate = evt.coordinate;
 var lonlat = ol.proj.transform(coordinate, 'EPSG:3857', 'EPSG:4326')
 var hdms = ol.coordinate.toStringHDMS(lonlat);
 popup.setHtml('<p>' + hdms + '</p>');
 popup.position(coordinate);
 popup.show();
 });

 // hide the popup once it isn't on the map any longer
 mapComponent.on('pointerrestout', popup.hide, popup);

 var treeStore = Ext.create('GeoExt.data.store.LayersTree', {
 layerGroup: map.getLayerGroup()
 });

 var layerTreePanel = Ext.create('Ext.tree.Panel', {
 title: 'Layers of the application',
 width: 300,
 region: 'west',
 store: treeStore,
 rootVisible: false,
 viewConfig: {
 plugins: { ptype: 'treeviewdragdrop' }
 }
 });

 var featureStore = Ext.create('GeoExt.data.store.Features', {
 layer: vectorLayer,
 map: map
 });
 var featureGrid = Ext.create('Ext.grid.Panel', {
 store: featureStore,
 region: 'south',
 title: 'Centers of Mongolian Aimag',
 columns: [
 {xtype: 'gx_symbolizercolumn', width: 30},
 {text: 'Name', dataIndex: 'NAME', flex: 3},
 {text: 'Population', dataIndex: 'POP', flex: 1},
 {text: 'AIMAG_ID', dataIndex: 'AIMAG_ID', flex: 1}
],
 listeners: {
 selectionchange: function(sm, selected) {
 // reset all selections
 featureStore.each(function(rec) {
 rec.getFeature().setStyle(null);
 });
 // highlight grid selection in map
 Ext.each(selected, function(rec) {
 rec.getFeature().setStyle(blueStyle);
 });
 // update the grid rendering of the geometry
 sm.view.refresh();
 }
 },
 height: 300
 });

 // 3) Ext JS
 //
 // Create a viewport
 var vp = Ext.create('Ext.container.Viewport', {
 layout: 'border',
 items: [
 mapComponent,
 layerTreePanel,
 featureGrid
]
 });
});
 </script>
 </body>
</html>

	If you open this file in a browser (/map.html), the application should look like in the following image, but you should also be able to see popups when hovering over a map location:

[image: Our starting point]Our starting point

	We want the overview map to live in the top-left corner of our application, right above the layer tree. For this we will — as usual — first prepare the layout before we use the GeoExt component.

	Create a new panel that we will eventually replace with the overview, but don't add it anywhere yet:

var overviewPanel = Ext.create('Ext.panel.Panel', {
 title: 'Overview',
 layout: 'fit',
 html: 'TODO',
 height: 300,
 width: 300
});

	Instead of assigning the region: 'west' to the layer tree panel, we'll create a new container with the vbox-layout and pass that to the items of the Ext.container.Viewport:

var vp = Ext.create('Ext.container.Viewport', {
 layout: 'border',
 items: [
 mapComponent,
 // below is the new wrapping container:
 {
 xtype: 'container',
 region: 'west',
 layout: 'vbox',
 collapsible: true,
 items: [
 overviewPanel,
 layerTreePanel
]
 },
 featureGrid
]
});

	If we specify flex: 1 for the layerTreePanel (the region-property is no longer needed), your application should look like this:

[image: The prepared layout]The prepared layout

	Now it is time to use GeoExt.component.OverviewMap: Create an instance of this class and read the related API-docs.

	Configure the overviewPanel with the created overview instead of html: 'TODO' (via items).

	You may want to have another layer in the overview. How about this WMS?

URL: http://ows.terrestris.de/osm-gray/service
Layers: OSM-WMS

	

Hint

var overview = Ext.create('GeoExt.component.OverviewMap', {
 parentMap: map,
 layers: [
 new ol.layer.Tile({
 source: new ol.source.TileWMS({
 url: 'http://ows.terrestris.de/osm-gray/service',
 params: {
 layers: 'OSM-WMS'
 }
 }),
 opacity: 0.8
 })
]
});
var overviewPanel = Ext.create('Ext.panel.Panel', {
 title: 'Overview',
 layout: 'fit',
 items: overview,
 height: 300,
 width: 300,
 collapsible: true
});

	If everything went well, you should see an application like below:

[image: The final application]The final application

 Other

 Other & summary

Congratulations! You created quite an application with just around 200 lines of JavaScript; and that includes plenty of comments and whitespace.

GeoExt still has more to offer.

We couldn't talk about legends in the tree, the super useful GeoExt.OlObject-class or the PrintProvider which allows you to serialize your map to a format understandable by the superb Mapfish Print Servlet (v3).

Make sure to checkout all examples, the API documentation (also available with ExtJS-classes) and the code on github.

The source for this workshop is also on github. If you find an error or outdated section, just open an issue or — even better — provide us with a pull request.

We hope you like what you have learned.

 Synopsis

 Synopsis

Congratulations! You've successfully finished the workshop "Introduction to core technologies behind the MoMo geoportal" [image: :tada:]!

boot_screen.png
@ loulM

smiley.png

geoportal.png
M-' Geoportal

G

LY [T EERr

15 - sttt
frm——

g

G

7

0 1

11 emcn

configure_group_layer.png
Layer group

Editthe contents of alayer roups
Name.
T —
e
Word layer
Avsiract
Workspace.
Bounds
winx iy maxx Maxy.
[151,80000305175 -9, 866171691604] 161 800018310547 90
Coordinate Reference System
EpsGuas Find.. | EPSGWGS 84,
‘Generate Bounds
ode
Layers @
© Add Layer.

© Acd Layer Group.

(5> Resuts 1102 oukof 2iams)

rest_theory.png
client :

. 1
<object> .
GET

\

1

1

1

! 1

I | GeoServer
U 1

Y
<object>' /:/PO;, PUT, DELETE

server

preview_group_layer.png

rest_crs_settings.png
‘Coordinate Reference Systems

Native SRS
EPSG4326 EPSGWGS 84..

Declared SRS

EPSG54009 World_Molweide...
SRS handiing

Reproject native to declared ¥

Bounding Boxes

Native Bounding Box
Min X MinY Maxx Max Y
-18.203.152,54443] 9,020 047,848073 18.203 154,07225| 8,798,621 8B4475¢
Compute from data

LatiLon Bounding Box
MinX MinY MaxX Max Y
~458,36623610465]-90 180 84,5022735595707

Compute from native bounds

terminal_logo.png

geoserver-logo.png
uﬁv GeoServer

rest_start_view.png
Geoserver Configuration AP1

imports

workspaces
namespaces

about/manifest
about/version
settings
settings/contact
services/wms/settings
services/wfs/settings
services/wes/settings
templates

cover.jpg
MoMo

Integrated Water Resources
Mongolia

Management |

MoMo3 Workshop
2016-02-22 - 2016-02-26

add_raster_layer.png
New Layer
Je P

A ayer fiom | momo-ocean-bottor-relief ¥ |

On sires you can aso create a new coverage View by merging ferent Coverages &5 & MUIBANCS COVErage. Cnfgure hew Coverage view .
Here 1 a st o esources contaned n the sioe ‘ocean-botom- . CIck on the layer you wish o confgure

o]

(2<)(<)(1)(>)(>) Resuits 0100 foutof O kaen)

configure_raster_store.png
Ada Raster Data Source

Descripton

Imagepyamia
image pyramcal pugin
Basic Store Info
Workspace

Duta Source Name +

(ocean-bortom retet
Description

@ Enablea
Connection Parameters

vRL
le data/OB_LR_pyramia

preview_raster_layer.png

configure_raster_layer.png
@ nverized
Tite

Ccean ot et

prey

[londed Gop oo 2 et shain of e ocean botom deved fom CRanTO0Z
=y

Curtent Keyuords

magepyamia
0.1 e -
e —

Metadata links
[re————

[AGHK] ot oty G0 and TC211 metadata ks show p in s 111 capabiies

Datalinks
o data s 0 o

‘Coordinate Reference Systems.
e sms.
oeciaredsws

EE—— -
s handiing

Keep naiive .

‘Bounding Boxes
e Bounding Sox

inx winy maxx axy.
a0 25 59999505582] 175.99999059995: 0
Compue fom daa

Laton Bounding Box
inx winy maxx axy.
a0 5 59099555582] 175.99999059995: 0

oo o e bounde.

layergroup_add_layer.png
‘Choose new layer

\ ocean-bottom

esults 110 1 (out of 1 matches from 21 items)

layergroup_select_crs.png
‘Select a coordinate system. Use the search box to narrow the.

\ 4326
4326

4326 WGS 84
<

Results 110 1 (out of 1 matches from 5,846 items)

gwc_create_cached_layer.png
Data | Publishing | Dimensions | Tie Caching

Tile cache configuration

) Create a cached lyer for thislayer

¥ Enable t caching for s tayer

@ Enable In Memory Cachingfor s Layer.
Blobstore

() Detauit Biobstore +
Metating factors

4 v teswiteby (4 v |uiesnign
Gutter size i pnels

0 v

T mage Formats

imagelgit

imageipeg

imagelpng

imagelpngd

oo

Expie servr cache afer n scconds (et to 0 to use source seting)
o

Expie cllent cache ate n seconds (set 0.0 o use server settng)
0

Paramete Fiters

sTYLES

Deauit sty Aiernate Styies
LAVER DEFAULT v|) ALLSTYLES

cateer Croosa one Gk
ca sy e ©

Avatante grasets

Gridset Pubished z00m evels Cached zoom evels
e i v 1 i v M 1 i v
cagosuser Chosseone v

Grid subset bounds
Dynamic

gwc_new_gridset.png
Create a new gridset

Define & e gidset for GeowebCache
Name*

[—
Descripion

‘Coordnate Reference System

EPSGiaa25

nis:*

Meters per unit: 111319.49079327358

Grdsetbounds

inx iy Maxx Maxy.
80 T i o0

cot nsin . e
—— S g
1 oz | 1150060000] B
o o :
s ToowaoET | 1757500000] B
o e D
s oozmoTTReIIE | 119575000] [
C—
7 Jocoseostsszn | 1725575] f

S
w o
o o
s

gwc_start_seed_task.png
{‘:3 GeoWebCache

List [this Layer tasks | there are no tasks for other Layers)

Submit

Kill[all | Tasks for Layer ‘momo:countries’.

List of currently executing tasks:
« none

Retresh list

Please note:
+ This minimalistic interface does not check for correciness.
+ Seeding past zoomievel 20 is usually not recommended.

« Truncating KML will also truncate all KMZ archives.
« Please check the logs of the container to look for error messages and progress indicators.

Here are the max bounds, if you do not specify bounds these will be used.

* momo-4326: -180.0,-90.0,181.800018310547,84 5022735595703

Create a new task:

Number of tasks to use: [04 v

Type of operation: Reseed - regenerate all tiles ¥

Grid Set momo-4326 ¥
Format T
Zoom start: [oov]

Zoom stop: [o7v]

Modifiable Parameters: STYLES: | momo:countries ¥

Bounding box:
These are optional, approximate values are fine.

‘Submi

gwc_seed_layer.png
Tile Layers

Manage the cached ayers pubished by e integrled GeoWebCache
© Adda new cached layer
© Remove selected cached layers

Resuls 110 1 (outof 1 matches rom 25 fems)

momccounties NIA NA

* Resuls 1 1o 1 (out of 1 maiches from 25 fiems)

\ countries|

‘SeedTruncate | Empy.

gwc_open_preview.png
Tile Layers

Manage the cached ayers pubished by e integraed GeoWebCache
@ Add anew cached layer
© Remove sefected cached layers

| countries.

gwc_task_status_list.png
Listof currently executing tasks:

I Layer Staws Type Estimated ¥ of tles Tles completed

1 momo counties RUNNING RESEED 9,738
2 momo counties RUNNING RESEED 9,738
3 momo'counties RUNNING RESEED 9,738

4 momo counties RUNNING RESEED 9,738

P

28
ES

5 saconcs.
5 seconds.

5 seconds.

Time remaining Tasks

49 seconds
40 seconds
46 seconds

43 seconds

(rask 1014 i Task

(Task2 014 i Task
(Task301 4) i Task

(Tasic o1 &) [Task

wink.png

rest_layer_preview.png
Scale=1:279M
Click on the map to get feature info

gwc_gridset_pyramids.png
Level 0: 1x1

‘L.evel 1:2x2

gwc_proxy.png
GeoWebCache

WMS Servers

gwc_gridsets.png
Gridsets

Manage the avatable gidsets or create a new one
© Create anewgricset
© Remove selecied rdsets

Ress 1105 (outor fers) . searen

| orisat crs Tie Dimensions Zoomlovls _ Disk Usage
GlbacRsgiscal EpsGas 6x255 2 008 Createacopy.
Epscazzs epscazs 2563255 2 008 Cresto acopy
‘Googecrs8aQuad EpsG a2 250x250 1 008 Createacopy.
EPSG00513 EPsconers 2%6x256 2 008 Creste acoy
GlbacRBAPrl EpsGas 256x255 . 008 Createacopy.

< <)1)~ > Results 1105 foutof 5 kems)

debugger.png
Q

Elements Network | Sources | Timeline Profiles Resources Audits Console

Sources | Content scripts Snippets |[I5] maphtml [ol-debugjs x Clnjm, ~ + t v O
v © localhost:8001 3557 fuog. inherits (goog asserts . AssertionError, goog.debug.Errar): | O Pause On Caught Exceptions
B

= maphtml

3560/ /+* goverride */
3561 goog.asserts.AssertionError. prototype.nane = ‘AssertionError’

3564 /%%
3565| "+ The default error handler.

3566| * @param {!go0g.asserts.AssertionError} e The exception to be handled.
3567|_+/

- [quog:asseres OEFAULT ERROR HAVDLER = funciion(e) { thraw & 3i

3571 /=
3572| "+ The nandler responsible for throwing or logging assertion errors.
3573| * gprivate {function(!goog.asserts.AssertionError)}

3578| */

3575 goog.asserts.errorhandler_ = goog.asserts.DEFAULT ERROR HANDLER;

3578 /*+
3579| « »

» Watch Expressions

v Call Stack

goog.asserts.DEFAULT_ERROR_HANDLER
‘goog asserts.doAssertFailure_ ol-debugs3603
‘goog asserts assertinstanceof ol-debugjs3813
olrenderer.canvas.mageLayer.prepareFrame okdebugis79697
olrenderer.canvasMap.renderFrame oldebugjssiss1
ol Map.renderframe_ oldebugjss9202
'goog.asyncAnimationDelay.doAction_ oldebugjsT0195

Paused on exception: goog asserts AssertionError'.

v Scope Variables

{} Line 3568, Column1

¥ Local
b <exception=: goog.asserts.AssertionError
»e: goog.asserts.AssertionError
b this: Object

[Window

N

cached1.png
My

(T

\f{ omanaeolraneon L 4
o 224 tvangio)
ET | (Pam PLN

5 s
= (chrdors) | 12 (Oeseomyeen)
wr

d

“9"““““‘?’ (o)

.
AT T e

wms1.png

vector1.png

proprietary1.png
Pongujse.

ot
R TSR 2 Kwangj
heon S | | (Kwangiu

7 Kwangmyang

jpyeong
T
" Anyang Songram ‘{
. Kunpo LN fewen: N

@ b0 © 2016 HERSE ©2016 Zewin © 2016 Microsof Corporation Temaof Use

e

scaleline2.png

scaleline1.png

gwc_clear_list_btn.png

layout-border.js
Ext.create('Ext.container.Viewport', {
 layout: 'border',
 defaults: {
 bodyPadding: 15,
 collapsible: true,
 split: true
 },
 items: [{
 title: 'Item 1',
 region: 'north',
 height: 100,
 html: 'Content 1'
 }, {
 title: 'Item 2',
 region: 'east',
 width: 150,
 html: 'Content 2'
 }, {
 title: 'Item 3',
 region: 'west',
 width: 150,
 html: 'Content 3'
 }, {
 title: 'Item 4',
 region: 'center',
 html: 'Content 4'
 }]
});

gwc_dev_toolbar.png
WD S oo T o e i o St
€6 m 7 Gt | e Orente iy

[DI R pe R

e i
rpese frmverver) pe
[t ; P

layout-table.png

layout-table.js
Ext.create('Ext.container.Viewport', {
 layout: {
 type: 'table',
 columns: 3,
 tableAttrs: {
 style: {
 width: '100%'
 }
 }
 },
 defaults: {
 bodyPadding: 15,
 },
 items: [{
 title: 'Item 1',
 rowspan: 1,
 colspan: 1,
 html: 'Content 1'
 }, {
 title: 'Item 2',
 rowspan: 1,
 colspan: 1,
 html: 'Content 2'
 }, {
 title: 'Item 3',
 rowspan: 1,
 colspan: 1,
 html: 'Content 3'
 }, {
 title: 'Item 4',
 colspan: 2,
 rowspan: 1,
 html: 'Content 4'
 }]
});

map1.png

intro.png
HOW DOES COMPUTER
PROGRAMMING (WORK ?

)

M/-)(GIC .
&

)

component-panel.png

component-panel.js
Ext.create('Ext.container.Viewport', {
 layout: 'border',
 defaults: {
 xtype: 'panel',
 bodyPadding: 15,
 collapsible: true,
 split: false,
 margin: 5
 },
 items: [{
 region: 'north',
 collapsible: false,
 height: 60,
 border: false,
 html: 'Content 1'
 }, {
 title: 'Item 2',
 region: 'east',
 width: '20%',
 html: 'Content 2'
 }, {
 title: 'Item 3',
 region: 'west',
 width: '20%',
 html: 'Content 3'
 }, {
 region: 'center',
 collapsible: false,
 html: 'Content 4'
 }, {
 title: 'Item 5',
 region: 'south',
 maxHeight: 350,
 collapsed: true,
 html: 'Content 5'
 }]
});

component-hierarchy.png
Ext.containerViewport

Ext.form.Panel

Ext.tab.Panel

Ext.form.field Text Ext.button.Button

Ext.panel.Panel Ext.panel.Panel

layout-border.png
Content 3 Content 4 Content 2

component-image.js
{
 region: 'north',
 collapsible: false,
 height: 60,
 border: false,
 bodyPadding: 5,
 items: [{
 xtype: 'image',
 src: './materials/ext-logo.png',
 height: 50
 }]
}

component-panel-toolbar.png
C Button1

component-panel-toolbar.js
tbar: [{
 xtype: 'button',
 text: 'Button 1',
 iconCls: 'fa fa-repeat'
}]

simple-server-start.png
[} Directory listing for / ~ x

<« » o [[10.0.0.0:8000

Directory listing for /

style2.png

basic-template.html

 Use this template to create your own HTML files

atom-start.png
untitled
File Edit View Selection Find Packages Help

include-ext-cdnjs.html

basic-html-template.png
/) This is a basic HTML ter x \ |

<« > o [[}0.0.0.0:8000 Ve =

Use this template to create your own HTML files

open-window.html

include-ext-js.png
/[This is a basic HTML ter x \

[BIEER

<« ® o [}0.0.0.0:8000

w|=

Use this template to create your own HTML files

draw1.png

select1.png

style1.png
w?

St Bt e

welcome_page.png
GeoServer

‘Welcome

P

[—
) eroroven

I | s e e 282 o st e s o

settings_verbose_logging.png
2016-02-09 11

o oEmIie [R5 1 amr rocareerann . cab o D L T enrel o T o
477 DEBUG [filter.GeoServerSecurityContextPersistenceFiltersl] - SecurityContextholder

now cleared, a5 reglest processing conpleted

2016-02-69 11:58:52,081 DEBUG [security. IncludeQueryStringantPathRequesthatcher] - Checking match of request
: 'Path: /web/, QueryString: wicket:interface=:75: forn: :IFornSubnitListener::"; against '/web/**
2016-02-09 11:58:52,081 DEBUG [security. IncludeQuerystringantratiRequesthatcher] - Matched Path: /web/,
QueryString: wicket: interface=:75: forn: IFornSubmitlistener:: with /ueb/"*

2016-02-

[ows.OwSHandlertapping] - o handler mapping found for [/veb/]

[ows OwSHandlertapping] - No handler mapping found for [/veb/]

[ows OwSHandlertapping] - No handler mapping found for [/veb/]

[ows OwSHandleriapping] - o handler mapping found for [/veb/]

[org geoserver] - Thread 35 Locking in node WRITE

[org geoserver] - Thread 35 got the lock in mode WRITE

[org_geoserver] - Thread 35 releasing the lock in mode WRITE
[filter.GeoServersecurityContextPersistenceFiltersl] - SecurityContextHolder
now cleared, as request processing conpleted

2016-02.00 11:58:52,087 DEBUG [security. IncludeQueryStringAntPathRequestMatcher] - Checking match of request
© 'Path: /ueb/, QueryString: wicket:booknarkablePage-org.geoserver.web. adnin. LogPaget| ines-1000"; against

eebros
2016-02.09 11:58:52,088 DEBUG [security. IncludeQuerySt ringAntPathRequesthatcher] - atched Path: /ueb/,
QueryString: vicket-booknarkablePages:org. geoserver web. agnin. LogPaget ines=1000 with fweb/o+
2016/02.09°11:56:52,088 TRACE [os.OWsHandLerhapping] - o handler mapping found for [/web/]
2016.02.09 11:58:52,088 TRACE [ovs. SHandLerapping] - Mo handler mapping found for [/web/]
2016-02-09 11:58:52,088 TRACE [ovs. WSHandLertapping] - Mo handler mapping found for [/web/]

088 TRACE [ovs. OSHandLerapping] Mo handler mapping found for [/web/]

Sore0s 0s 11
3016 05 05 11:35130/008 DERG oy gcoserver] - hraad 44 Locking i bode WRLTE
3016 03 08 11:35:30/008 DERUG oy Beoserver] - Thread 44 ook he Lok 1n mode WRITE
So1e 63.05 11351351051 DERUG |gegsarver webl - ot comvert urt:
Joriitatsuar/ b oncat ebappsy Qeoseryar NES- /iy ga- e Core-
Ta Lt rarafasoservar s/ ccerboeprine/acreen-cos 2o Hite RI is not hierarchical), falling back to the
Tipikitreon Tor potting
S03eCe2 e 1158153053 DEBUG lgeoserver.webl - camot comvert ur
B uat 7 oneat wbsabasypeoserser eSS 195 oehy-Sors-
TS R Gacosorees ey Ebyloepraney it o 1o/ 16 CURY 55 not hierarchical), folling back to the
Dt T ottine
e a8 00 11050752 ,683 ogBus (geoserver.vebl comot. convert ur
e uat 7 Soneacswesapaespeoserven NEB-SHE Lo oeb-Sors-
L ot seuservar oo pbosemer. cos o FhLe (BRI 5o no hierarchical), flling back to the
Lpidran T ottine
5”1 1%56753,053 bEbU (geoserver.uebl - camnot convert url:
il it sl et s S ol are
S Tora/seuseruar oo oeprin/ e cos o A8 (RE 5o hot hierarchical), falling back to the
il ran e ot
it 2,353 06806 [geoserver.vebl - comot. convert ur
file: /var/1ib/toncat?/webapps/geoserver/WEB- INF/1ib/gs-web-core-2.8.2. jar! forg/geoserver/web/ js/jauery -
L Eimtn 1o 1o FiLe (R 15 mox. hlerarchical)s fatling back to-the inpitiireas for potting
St e (Lt el Tl bk o 8 I
AT ar et b e S i - o
oralaseserer Fo o asery: AL ireinto. 15 o Fite, GRE"1s not hierarchical), falling back to the

settings_logging_level.png
& Verbose Messages

@ Verbose Exception Reporting
@ Enable Giobal Senvces.

Handle data and configuration problems in capabilties documents by...
Choose One i

Number of Decimals
s

Character Set

UTF8 i

Proxy Base URL

Logging Profile

DEFAULT_LOGGING properties <
GEOSERVER_DEVELOPER_LOGGING properties
GEOTOOLS_DEVELOPER_LOGGING.properties.
PRODUCTION_LOGGING.properties
QUIET_LOGGING.properties

TEST_LOGGING properties

@ Log to Stdout

administration_status.png
Server status

‘Summery ofserver configuraton and tatus

Acton
Data directory NamboncaTebappslgeosenveliaa

Locks: o Frsslocks
Connections 6

Memary Usage sve Free mermary
WM Version Oracle Corporaton: 17.0_80 Java HaSpoiT) 648 Server VM)

Avatable Fonts (GeoSenver can access 633 diferent fonts. Ful st of avasable orts

Native JA1 e

Native JA1 Imagei0 fase

A Maimum Memory 168

I8 Memory Usage oka Free mermary
I8 Memory Threshold 750

Number of 1 Tie Threads 7

A Tile Thread Priorty s

ThreadPoolExecutor Core Pool Stze s

ThreadPoolExecutor Max Pool Size 10

ThreadPoolExscutor Keep Allv Timo (ms) 30000

Update sequence 156

Resourca Cache Clow
Configuration and catalog Reload

welcome_page_login.png
GeoServer

Welcome

s oo bokngt T st g . R
Er " Mo 1o
wspes © s wonspas u

T s o s 1 i 8 o R i gy s
T ——— 200

oy e oty g . O N
g sy st s s oy s - e

1S oot s e sen 282 Fox et pse o % -

@ cenmeans
o

= Dok i

= s

ey
seanss

G e

& s g, ks
ey

8 severe

& wesseary

administration_contact.png
Contact Information

‘Set the contact information for ths server.

Contact

Claudius Polomaeus.
Organization

The ancient geographes INC
Position

Chief geographer
Address Type

Work
Address.

Address Delivery Point

city

Alexandria

2P code.

Country

Egypt
‘Address Electronic Mail Address

Telephone

Fax

Email

claudius ptolomaus@gmail.com

administration_logs.png
Geoserver Logs

‘Showthe GeoServer g fle contents

Mamum console nes 1000 Refresn

at org.apache. catalina. core. ApplicationFilterChain.doFilter (ApplicationFilterChain. java:208] 3]
at org geoserver. filters.SessionDebugFilter . doFi Lter (SessionDebugFilter. java:48)

at org.apache. catalina. core. ApplicationFilterchain. internalDoilter (ApplicationFilterChain. java:241)

at org apache. catalina. core ApplicationFilterChain.doFilter (ApplicationFilterChain. java:208)

at org.geoserver. filters. FlushsafeFilter .doFilter (FlushsafeFilter. java:44)

at org.apache. catalina. core. ApplicationFilterchain. internalDoFilter (ApplicationFilterChain. java:241)

S8 org_apache.catalina, core APPUACaTiOnF L terChain. doFiLter (AppLicationFilterchain.Java:268)

org spnanrmrk web. filter . CharacterEncodingFilter doFilterInternal (CharacterEncodingFilter . java:88)
it 0rg.springfranework web. filter .OncePerRequestFilter. doFilter (OncePerRequestFilter. java:76)
3t Grgapache. catalina. core. AppLLcaTionEL LTerchain. internaloori ter ABPLLCaTionFiL terihain. ava:241)
at org.apache. catalina. core ApplicationFilterChain. doFilter (ApplicationFilterChain. java:268)
at org.apache. catalina. core. StandardurapperValve. invoke(StandardrapperValve. java:226)
at org.apache. catalina. core. StandardcontextValve. invoke(StandardContextValve. Java: 122)

at org. catalina.authenticator . Authenticator8ase. invoke(Authenticator8ase. java:501)
at org. catalina core. StandardiostValve. invoke (tandardHostVale. java: 176

at org. catalina.valves. ErrorReportalve. invoke(ErrorRepor tValve. 1ava:98)

at org. catalina.valves AccessLogyalve. invoke(AccessLogValve. java:050)

at org. catalina. core. StandardengineValve. invoke StandardEnginevaive. java: 116)

at org. catalina. connector. CoyoteAdapter .servicel CoyoteAdapter . java:408)

at org. coyote. hitpl1 Abstracthttpl1Processor .process (AbstractHttpl1Processor. java: 1041)

at org. coyote AbstractProtocol SAbstractConnectionHandler .process (AbstractProtocol . java:607)

3t ora-apache toncat.util. net MoEndpointSSocketProcessor. rn oEndpoint.ava:313)
3t Javautil. concurrent. ThreadPoolExecutor rurWorker (ThreadPog Executar. y3va: 1145)
3t Java.util concurrent. ThreadpoolExecutornarker - run ThreadPoolExecutor ava 615)
e N o
Caused by: arg:geowebiache:storage.Storageuception: 51 Unknown Layer mono- rest:countries_rest. Chec
e Toglies: S8 mey ot e Losiea propery.” e
torg-geoutbeache storage. Composs teblobstore.store(Composi teBlobstore. java:309)
3t ord.Gecuebeache. atorage. Conposi teBlobstore.detete ConpossteBlobStore. ava:125)
3t ord.Geoserver.gue.ConfigurabteBlobStore. deiete (ConfigurableBlobstore. Java: 130)
3t ord.Geowebeache.storage:De aul{Storagedroker delete befauL StorageBroker- javais3)
3t ord.Geoserver gue.GHC. LayerRenoved (G ava:564)
185 nore
org.geovebcache GeoebCacheEnception: Thread 41 Unknawn Layer mono-res
Tagfiles; it nay not have ioaded property.
at oro-seowebcache. Layer.teLayerDispatcher getTileLayer TileLayerDispatcher. java:105)
3t ord.Geouebcache. storage. Conposi teatobstore.forLayer | ConpositeBlobStore. ava:326)
3t 0rg.Gecuebcache. storace. Conposi teBlobstore. store(CompossteBlobStore. java:307)
16°n0re
2016-92-95 10:14:30,625 TNFD [catalog.rest] - DELETE Layer countries. rest
2016-02-05 10:14:38.627 TNFO [catalog. rest] - DELETE feature. typeds fomo s rest, cauntries rest

ountries_rest. Check the

oo

Download the fulllog file

services_limit_srs_list.png
Limited SRS list

4326, 3857, 900913

© Output bounding box for every supported CRS.

administration_about.png
About GeoServer

‘Generalinformation about GeoServer

Build Information
Version

282

Git Revision

1136632560600477LOCGA0SIU3105e06E19B5TS

22020160221

GeaToots ersion

142 1oV 7305c956043006¢591e52001eb07420017E0%)

GeaMebCache Version

18,1 1oV 22447150CASTI7 20160 T4GGB3400RT 3TeSICT22A4TISOCATIT2DIEGETABBIAD0RTIRTESIE)

More Information

‘GeaSenveris a ul transactonal Java implementatin of the Open Geospatal Consortum's specifcatons for Web Feature Service (WFS) and Web Coverage
‘Senvice (WCS) ith an integrated Web Map Service (WMS).

i web adminsiration intetace alows for easy coniguraton of GeoServer, Afle loggingin, lease use the menus on the ef 0 navigae (vough he
{ntetace. The About and Status men s ectiical detals about e running GeoServer nsanc. The Data men s Used 10 Confgure 0aa soutces and
Siyling. The Senvice menu povides senice-vide configuraion opions, The SetngS menu rovides Confgurations OpLONS tha apply 0 allSevices 1. Sever-
wid). Th Tile Caching menu allos configuraton f the embedded e cache. The Secrly menu aows configualion of ECesS Contiols (auenication and
‘aushorization) The Demos menu has examples of GeoSarver i acton. The Tools men allows access t SdminSraIe tols (2.9, forloading ata),

Usetu Links:

Documentaton
Wi

Bug Tracker

settings_handle_problems.png
‘Handle data and configuration problems In capabilities documents Dy...

‘Skipping misconfigured layers ¥

services_service_level.png
Service Level
© Basic
Transactional

Complete

settings_number_decimals.png
Number of Decimals

refresh_list_view.png
Fie Edit Plugins View Toos Help

= (G Databases (2)
(3 db_momo_ws
& © Catalogs (2)
@ Event Tiggers (0)
& @ Extensins (1)
& @ schemas (2)
& O geodata
¥\ Collations (0)
) Domains (0)
& TS Confgurations (0)
Wl £7S Dictonaries (0)
@ TS parsers (0)
@ FTS Templates (0)
® Functions (0)
& % Sequences (1)
& BTables (1)
© [thl_countries
® Tigger Functons (0)
G Views (0)
@ & public
‘% Slony Replication (0)

thumbsup.png

open_data_view.png
PgAdmin Il
Flo Edi Plugins View Tols Help

&0 =1%ol &=

& B server Groups
& [servers (1)
5 [} momoworkshop (locahost:5432)
© (3 Databases (2)
& (3 db_momo_ws

© & Catabogs (2) e
 event Tiggers 0) 0 5 nin Netherlands L1 1
& % exensions 1) 2 0 min Afghanistan A7 o
& ® Schemas 2) > 0 adin. sogola_aco o
B O, o 5 din nited KingcaL 1
°n o s 0 adin Albania A5 0
0 s adin Finland P11 1
Qe i o din sndorra A o
@ FTS Configurations (0) 0 o \Admin \United Arab ARE 0
1l 75 Dictionaries (0) o o dnin Argentina A% o
@ 7S Farsers (0) 1 o din Arsenia i o
) n s din nited status 1
Sl 12 0 din ntarctica ATA 0
o S 0 s din France L 1
1 3 dnin antiqun amd AT o
& BTbles (1) s 0 Adnin. Mustralia a1 1
PRaT s counic] m B s hstriawr o
© Tigger Functons 0) 52 0 din aerbatian AzE o
5 Views 0) 18 0 anin furwdi o1 o
5 O publc 0 0 din belaim BEL o
= 0 dein Gemsnben o
(=T 2 o dnin Burkins Fazerk o
3 postores 2 0 din sanaladesh 660 o
© @ Tbespaces (2)) 0 din aulearia ot o
S roup ks 01 = 5 o T T S—)
s 5 din The Baharas b o
0 o6 0 0 dein Gosnis and 611 o
z s dnin Bajo tuevo £ o
s s dnin France L 1
£ 0 adin selarus 6% o
£ 0 din felize bz o
5 s din nited KingGB1 1
0 0 dnin folivia 6oL o
» o dnin oranl o
e 5 din sarbados o o
o Adnin:o_couls, T —— 0

[Retrieving details on table thl_countries... Done.

pgadmin_logo.png

security_change_user_pw.png
admin
) Enabled

pgadmin_connect_database.png
a Servers (1)

pgadmin_new_server_connection.png

pgadmin_run_query.png

pgadmin_open_query_window.png

add_workspace.png
New VVorkspace
Configure anewworkspace

Namespace URI

“The namespace uri associated with this workspace
Default Workspace

E4
submit Cancel

pgadmin_refresh_selected.png

select_default_style.png
'WMS Settings
) Queryable

) Opaque
Default Style.
‘momorcountries v

Iml

publishing_tab.png
edit Layer

Editlayer data and publishing

momo:countries

‘Configure the resource and publishing information for the current layer

Dsa || Publshing | Dimensions || Tie Caching

add_raster_store.png
Raster Data sources

8 ArcGrid - ARC/INFO ASCII GRID Coverage Format
8 GeoTIFF - Tagged Image File Format with Geographic information
8 Gtopo30 - Gtopo30 Coverage Format

8 ImageMosaic - Image mosaicking plugin

8 ImagePyramid - Image pyramidal plugin

@ Worldimage - A raster file accompanied by a spatial data file

preview_vector_layer_style.png
fid scalerank featurecla labelrank sovereigat sov_a3 adm0_dif level type admin adm0_a3 geou_dif geounit gu_a

Admino Sovereign
countries.153 0 30 Mongola MNG 00 20 s MNG 00 s MNG
. ongoli 18 Mongoli ‘Mongls

add_vector_layer.png
New Layer
Ao anew aer
You can create e featute yp by manualy cofiguing e tbutenames and ypes, Create new feaure ype..

On databases you can also create a new feature type by coniguing natve SQL stalement. Configure new SQL view...
Here s a it of resoutces contaned i the sore db_momo_us’ Cick on thelayer you wsh 0 conigure

(1)(>)(>> Resuts 101 outor tems)

configure_vector_store.png
New Vector Data Source

Add a new vector data source

PosIGIS
PoSIGIS Database

Basic Store Info

Workspace *
‘momo i

Data Source Name *

db_momo_ws.
Description

) Enabled

Connection Parameters

dbtype *

posigis
host*

localhost
port+

5432
database

db_momo_ws.
schema.

geodata

momo
passwd

Namespace *
http:Nlocalhost:80imomo

layer_preview.png
Layer Preview

Listof all lyers configured in GeoServer and provides previewsinvarous formatsfor each.

21>/ > Resufs 1101 (outof 1 maiches from 23 tems) . countres.

Type Name e ‘Common Formats Al Formats.

o momo-counties Counties OpenLayers KML GML Select one

configure_vector_layer.png
‘Hesource Info

@ nverized

prey
Counte o e v

Curtent Keyuords

5 o &
ooy

Metadata links
[re————

[AGHK] ot oty G0 and TC211 metadata ks show p in s 111 capabiies

Datalinks
o data s 0 o

‘Coordinate Reference Systems.
e sms.
oeciaredsws

EE—— -
s handiing

Keep naiive .

‘Bounding Boxes
e Bounding Sox

inx winy maxx axy.

o1 30000505175] -0 560171591504 1518000151054 a4 502273559570
Compue o daa

Laton Bounding Box
inx winy maxx axy.

o1 30000505175] -0 56017 591504] 161 800015510541 a4 502273559570
et fron e bounde.

preview_vector_layer_wfs.png
Layer Preview
List of all layers configured in GeoServer and provides previews in various formats for each.

Results 110 1 outof 1 matches from 23 fems) ., countrees

momo:counties Counties OpenLayers KL GML.

151> |Restits 110 1 (outof 1 matches from 23 fems)

preview_vector_layer_ol.png
B 10125000, 46.40625

fid scalerank featurecla labelrank sovereigat sov_a3 adm0_dif level type admin adm0_a3 geou_dif geounit gu_a

Admino Sovereign
countries.153 0 30 Mongols MNG 00 20 Mongolia MNG 0.0 Mongolia MNG
country country.

select_layer.png
Layers

"Manage he layers being pubished by GeoServer
© Addanewresource
© Remove selected resources.

[Resus 1101 (utor L mathes fom 20) coures

v EPSG4326

popup.png

after.png
of the application

& [aimag

& [0SM WMs (terrestris)

& [openstreetMap

ngolian Aim

Name Population AIMAG_ID
@ Mandalgovi 13979 12 =
@ ondorhaan 16380 16 I
@ choibalsan 38781 15
@i e
@ sainshand 18296 13
@ cror 9207 22

with-vector.png
& [aimag

& [0SM WMs (terrestris)

& [openstreetMap

Name Email Phone
Lisa lisa@simpsons.com 555-111-12. [
Bart bart@smpsons com 555.222-12
Homer homer@simpsons.com 55522212

.

I A T

prepared1.png
& [0SM WMs (terrestris)

& [opensireetvap

bart@simpsons.com
homer@simpsons.com

A

Phone

555-111-12.

555-222-12

555-222-12

T

tada.png

overview.png
Mongolla,

& [aimag

& [0SM WMs (terrestris)

& [openstreetMap

ngolian Aim:

@ cror 9207 22
@ Dalanzadgad 13966 1
@ zuunmed 14521 19
@ Darknan 70029 23

@ Erdenet 75752 20

overview-prepared.png
& [amag
& [0SM WMs (terrestris)

& [openstreetMap

ngolian Aim:

Name Population AIMAG_ID

Mandalgovi 13979 12
Ondorhaan 16380 16 I
Choilbalsan 38781 15
Baruunurt 14244 14
Sainshand 18296 13

Choir 9207 2

viewport-simple.png
Item 1

Content 1

Item 2

Content 2

Item

‘

Content 3

Item 4

layout-column.js
Ext.create('Ext.container.Viewport', {
 layout: 'column',
 defaults: {
 bodyPadding: 15,
 },
 items: [{
 title: 'Item 1',
 columnWidth: 0.3,
 html: 'Content 1'
 }, {
 title: 'Item 2',
 columnWidth: 0.2,
 html: 'Content 2'
 }, {
 title: 'Item 3',
 columnWidth: 0.2,
 html: 'Content 3'
 }, {
 title: 'Item 4',
 columnWidth: 0.3,
 html: 'Content 4'
 }]
});

layout-component-architecture.png
Container

Container Component

Component Component

layout-hbox.js
Ext.create('Ext.container.Viewport', {
 layout: {
 type: 'hbox',
 pack: 'start',
 align: 'stretch'
 },
 defaults: {
 bodyPadding: '10 15',
 margin: 5,
 flex: 1,
 },
 items: [{
 title: 'Item 1',
 html: 'Content 1'
 }, {
 title: 'Item 2',
 flex: 1.5,
 html: 'Content 2'
 }, {
 title: 'Item 3',
 html: 'Content 3'
 }, {
 title: 'Item 4',
 html: 'Content 4'
 }]
});

layout-column.png
Content 1 Content 2 Content 3 Content 4

data-grid.js
{
 xtype: 'gridpanel',
 title: 'GridPanel with remote store',
 region: 'center',
 collapsible: false,
 bodyPadding: 0,
 columns: [{
 text: 'First name',
 dataIndex: 'firstName',
 flex: 1
 }, {
 text: 'Last name',
 dataIndex: 'lastName',
 flex: 1
 }, {
 text: 'Instruments',
 dataIndex: 'instruments',
 flex: 1
 }],
 store: null,
 tbar: [{
 xtype: 'button',
 text: 'Button 1',
 iconCls: 'fa fa-repeat'
 }]
}

layout-vbox.js
Ext.create('Ext.container.Viewport', {
 layout: {
 type: 'vbox',
 pack: 'start',
 align: 'stretch'
 },
 defaults: {
 bodyPadding: '10 15',
 margin: 5,
 flex: 1,
 },
 items: [{
 title: 'Item 1',
 html: 'Content 1'
 }, {
 title: 'Item 2',
 flex: 1.5,
 html: 'Content 2'
 }, {
 title: 'Item 3',
 html: 'Content 3'
 }, {
 title: 'Item 4',
 html: 'Content 4'
 }]
});

layout-hbox.png

layout-accordion.js
Ext.create('Ext.container.Viewport', {
 layout: 'accordion',
 defaults: {
 bodyPadding: 15,
 border: false
 },
 items: [{
 title: 'Item 1',
 html: 'Content 1'
 }, {
 title: 'Item 2',
 html: 'Content 2'
 }, {
 title: 'Item 3',
 html: 'Content 3'
 }, {
 title: 'Item 4',
 html: 'Content 4'
 }]
});

layout-vbox.png
Item 1

Content 1

Item 2

Content 2

Item

‘

Content 3

Item 4

‘

Content 4.

data-store.js
Ext.create('Ext.data.Store', {
 autoLoad: true,
 storeId: 'formerMembers',
 model: 'FormerMembers',
 proxy: {
 type: 'ajax',
 url: './materials/former-members.json',
 reader: {
 type: 'json',
 rootProperty: 'data'
 }
 }
});

viewport-simple.js
Ext.create('Ext.container.Viewport', {
 defaults: {
 bodyPadding: 15
 },
 items: [{
 title: 'Item 1',
 html: 'Content 1'
 }, {
 title: 'Item 2',
 html: 'Content 2'
 }, {
 title: 'Item 3',
 html: 'Content 3'
 }, {
 title: 'Item 4',
 html: 'Content 4'
 }]
});

data-model.js
Ext.define('FormerMembers', {
 extend: 'Ext.data.Model',
 fields: [{
 name: 'firstName',
 type: 'string'
 }, {
 name: 'lastName',
 type: 'string'
 }, {
 name: 'instruments',
 type: 'string'
 }],
 validators: {
 firstName: 'presence',
 lastName: 'presence',
 instruments: 'presence'
 }
});

open-ext-window.png
Hello

ExtJs i herel

data-model-parts.png
String
Integer
Float
Boolean

Associations

ManyToOne
OneToOne
ManyToMany

Proxy
AJAX
REST

Localstorage
JSON-P

| Validations

Presence
Format
Length
Custom

data-grid.png
C Buttont

First name

Last name

Instruments

event-afterrender.js
afterrender: function(cmp) {
 Ext.toast({
 html: 'Click <code>Load data</code>!',
 title: 'Hint',
 align: 't',
 });
}

event-click.png
C Loaddata

First name Last name Instruments
Malcolm ‘Young Guitar, vocals, bass guitar
Dave Evans. Vocals
Bon scott Vocals
Mark Evans. Bass guitar, guitar, vocals
Phil Rudd Drums, percussion, vocals
simon Wright Drums

event-click.js
listeners: {
 click: function(btn) {
 var gridpanel = btn.up('gridpanel');
 gridpanel.getStore().load();
 }
}

data-store.png
C Button1

First name Last name Instruments
Malcolm ‘Young Guitar, vocals, bass guitar
Dave Evans. Vocals
Bon scott Vocals
Mark Evans. Bass guitar, guitar, vocals
Phil Rudd Drums, percussion, vocals
simon Wright Drums

event-afterrender.png
Hint

Click Load data!

C Loaddata

First name Last name Instruments

component-form-read-data.png
Text: Well done
Statws: oK

Number: 51 -
Combo: Entry 2 -
Check: =

Date Field: 02/17/2016 =}
Slider: c I

Upload:

Input data

“text™: "Well done”,
“number: 51",
“combor: Entry 2°,
“check': "o,

“dateField": "02/17/2016",
“slider”: 50

component-form-fields.png
Text:

Status:

Number:

Combo:

Check:

Date Field:

slider:

Upload:

Enter a text

oK

Enter a number

“

Select from list

o

layout-accordion.png
Content 1

component-form-fields.js
{
 xtype: 'form',
 title: 'FormPanel',
 region: 'east',
 width: '20%',
 autoScroll: true,
 defaults: {
 anchor: '100%'
 },
 items: [{
 xtype: 'textfield',
 name: 'text',
 fieldLabel: 'Text',
 emptyText: 'Enter a text'
 }, {
 xtype: 'displayfield',
 name: 'status',
 fieldLabel: 'Status',
 value: 'OK'
 }, {
 xtype: 'numberfield',
 name: 'number',
 fieldLabel: 'Number',
 emptyText: 'Enter a number',
 minValue: 0,
 maxValue: 99
 }, {
 xtype: 'combo',
 name: 'combo',
 fieldLabel: 'Combo',
 emptyText: 'Select from list',
 minValue: 0,
 maxValue: 99,
 store: [
 'Entry 1',
 'Entry 2',
 'Entry 3'
]
 }, {
 xtype: 'checkbox',
 name: 'check',
 fieldLabel: 'Check'
 }, {
 xtype: 'datefield',
 name: 'dateField',
 fieldLabel: 'Date Field'
 }, {
 xtype: 'slider',
 name: 'slider',
 fieldLabel: 'Slider',
 minValue: 0,
 maxValue: 100,
 value: 25
 }, {
 xtype: 'filefield',
 name: 'upload',
 fieldLabel: 'Upload'
 }]
}

component-image.png
Wwextjs

component-grid.png
First name Last name Instruments
Angus ‘Young Guitar

aiff Willams Bass guitar, vocals
Brian Johnson Vocals

Stevie ‘Young. Guitar, vocals
Chris Slade Drums, percussion

component-grid.js
{
 xtype: 'gridpanel',
 title: 'GridPanel',
 region: 'south',
 bodyPadding: 0,
 maxHeight: 350,
 collapsed: true,
 columns: [{
 text: 'First name',
 dataIndex: 'firstName',
 flex: 1
 }, {
 text: 'Last name',
 dataIndex: 'lastName',
 flex: 1
 }, {
 text: 'Instruments',
 dataIndex: 'instruments',
 flex: 1
 }],
 store: {
 data: [{
 firstName: 'Angus',
 lastName: 'Young',
 instruments: 'Guitar'
 }, {
 firstName: 'Cliff',
 lastName: 'Williams',
 instruments: 'Bass guitar, vocals'
 }, {
 firstName: 'Brian',
 lastName: 'Johnson',
 instruments: 'Vocals'
 }, {
 firstName: 'Stevie',
 lastName: 'Young',
 instruments: 'Guitar, vocals'
 }, {
 firstName: 'Chris',
 lastName: 'Slade',
 instruments: 'Drums, percussion'
 }]
 }
}

component-treepanel.png
D chiid 1

D chid 2

D chiid 3

8 & chid 4
[Grandchid 1

[Grandchild 2

component-treepanel.js
{
 xtype: 'treepanel',
 width: '20%',
 bodyPadding: 0,
 title: 'TreePanel',
 region: 'west',
 rootVisible: false,
 store: {
 data: {
 text: 'Root',
 children: [{
 text: 'Child 1',
 leaf: true
 }, {
 text: 'Child 2',
 leaf: true
 }, {
 text: 'Child 3',
 leaf: true
 }, {
 text: 'Child 4',
 children: [{
 text: 'GrandChild 1',
 leaf: true
 }, {
 text: 'GrandChild 2',
 leaf: true
 }]
 }]
 }
 }
}

data-model.png
Grouper

component-final.png

extjs-is-easy.png

hello-ext.png
basic HTML te' x

<« ®» O | [localhost:4000/exercises/ext-example.html

Use this template to create your own HTML files

hello-osm.png
/ @ Thisis a basic HTML te: x \

« » O ‘D localhost:4000/exercises/ol-example.html

ext-example.png
Layers of the a
[detention
8 £ homework

™ book report

[algebra

[buy lottery tickets

prepared.png
Layers of the application

map.png

hello-geoext.png
A,
e

“ Moo

before.png
& [0SM WMs (terrestris)

& [openstreetMap

full-tree.png
& [openstreetMap

unlabeled.png

event-change.png
GridPanel with remot

C Loaddata

First name. Last name Instruments

event-change.js
{
 xtype: 'textfield',
 emptyText: 'Find by First name',
 listeners: {
 change: function(field, newValue, oldValue) {
 field.up('gridpanel').getStore().filter({
 property: 'firstName',
 value: newValue || '',
 anyMatch: true,
 caseSensitive: false
 });
 }
 }
}

with-template.png
@ This is a basic HTML te' X

<« » O []localhost:

Use this template to create your own
HTML files N

m >

template.html

 Use this template to create your own HTML files

gx-logo-plain.png

event-change-result.png
C Loaddata sim
First name Last name Instruments
Simon Wright Drums

hello-ol.png
This is a basic HTMI

© [1 localhost:

simple-map.html

include-js-css.html

geoext-rocks.png
La]

@ This is a basic HTML ter x \ |
<« » O [} localhost:4000/exercises/my-exercise.html ¢

GeoExt rocks!

