

0

1

1.1

1.2

1.3

1.4

2

2.1

2.1.1

2.1.1.1

2.1.1.2

2.1.1.2.1

2.1.1.2.2

2.1.1.2.3

2.1.1.2.4

2.1.1.3

2.1.1.4

2.1.1.5

2.1.2

2.1.2.1

2.1.2.2

2.1.2.3

2.1.2.3.1

2.1.2.3.2

2.1.2.3.3

2.1.2.3.4

2.1.2.3.5

2.1.2.4

2.1.2.4.1

2.1.2.4.2

2.1.2.4.3

2.1.2.4.4

2.1.2.5

2.1.2.5.1

2.1.2.5.2

2.2

2.2.1

2.2.1.1

2.2.1.2

Table	of	Contents
Introduction

Overview

Prerequisites

References

Setup

Data

GeoServer

Basics

Administration

Login	and	frontend	overview

About	&	Status

Server	Status

GeoServer	Logs

Contact	Information

About	GeoServer

Services

Settings

Security

Publishing

Prerequisites

Workspaces

Vector	layers

Import

Store

Layer

Preview

Style

Raster	layers

Preparation

Store

Layer

Preview

Group	layers

Layer

Preview

Advanced

REST

Read

Create

MoMo	workshop

2

2.2.1.3

2.2.1.4

2.2.2

2.2.2.1

2.2.2.2

2.2.2.3

2.2.2.4

2.2.2.5

2.2.2.6

3

3.1

3.1.1

3.1.2

3.1.3

3.1.4

3.2

3.2.1

3.2.2

3.2.3

3.3

3.3.1

3.3.2

3.3.3

3.4

3.4.1

3.4.2

3.4.3

3.4.4

3.5

3.5.1

3.5.2

3.6

3.6.1

3.6.2

3.6.3

3.7

3.7.1

3.7.2

3.8

3.8.1

3.8.2

3.8.3

Update

Delete

GeoWebCache

Prerequisites

Configure	a	new	gridset

Configure	a	cached	layer

Generate	map	tiles

Check	cache	directory

Check	cache-headers

JavaScript

Basics

Comments

Variables

Types

Equality

Numbers

Creation

Basic	Operators

Advanced	Operators

Strings

Creation

Concatenation

Length

Conditional	Logic

If

Else

Comparators

Concatenate

Arrays

Indices

Length

Loops

For

While

Do...While

Functions

Declare

Higher	order

Objects

Creation

Properties

Mutable

MoMo	workshop

3

3.8.4

3.8.5

3.8.6

3.8.7

3.8.8

4

4.1

4.1.1

4.1.2

4.1.3

4.2

4.2.1

4.2.2

4.2.3

4.2.4

4.2.5

4.3

4.3.1

4.3.2

4.3.3

4.3.4

4.4

4.4.1

4.4.2

4.4.3

4.5

4.5.1

4.5.2

5

5.1

5.1.1

5.2

5.2.1

5.2.2

5.2.3

5.3

5.3.1

5.3.2

5.3.3

5.3.4

5.3.5

5.3.6

Reference

Prototype

Delete

Enumeration

Global	footprint

OpenLayers

Basics

Creating	a	map

Dissecting	your	map

Resources

Layers	and	Sources

WMS	sources

Tiled	sources

Proprietary	tile	providers

Vector	data

Image	vector	source

Controls

Scale	line	control

Select	interaction

Draw	interaction

Modify	interaction

Vector	Topics

Formats

Styling	concepts

Custom	styles

Custom	Builds

Concepts

Create	custom	builds

Ext	JS

Introduction

Workshop	Setup

Basics

Include	Ext	JS

Hello	Ext	JS

Viewport

Layouts

Column

HBox

VBox

Accordion

Table

Border

MoMo	workshop

4

5.4

5.4.1

5.4.2

5.4.3

5.4.4

5.4.5

5.5

5.5.1

5.5.2

5.5.3

5.6

5.6.1

5.6.2

5.6.3

6

6.1

6.1.1

6.1.2

6.1.3

6.1.4

6.1.5

6.2

6.2.1

6.2.2

6.2.3

6.2.4

6.2.5

6.2.6

6.3

6.3.1

6.3.2

6.3.3

6.3.4

6.4

6.4.1

6.4.2

6.4.3

6.4.4

6.5

6.5.1

6.5.2

6.5.3

Components

Panel

Image

Form

Tree

Grid

Data

Preparation

Model

Proxy	and	store

Events

Event	click

Event	afterrender

Event	change

GeoExt

Metainformation

About

Target	audience

Goals

Development	environment

Notes

First	steps

Hello	exercise

Hello	OpenLayers

Hello	ExtJS

Hello	GeoExt

Useful	resources

Summary

Map

Basic	example

Dissecting	the	example

Configuration	variants

Summary

Layer	tree

Prepare	layout

Create	a	TreePanel

Assign	LayersTree	store

Summary

Feature	grid

Prepare	layout

Create	a	feature	grid

Summary

MoMo	workshop

5

6.6

6.6.1

6.6.2

6.6.3

7

Popups,	Overview	map	&	other	components

Popup

Overview	map

Other

Synopsis

MoMo	workshop

6

Welcome	to	the	workshop

Introduction	to	core	technologies	behind	the	MoMo	geoportal

Ulan	Bator,	Mongolia

A	5-day	workshop	from	2016-02-22	to	2016-02-26

Sources
Workshop	URL
Download	workshop	(ZIP)
Download	workshop	(PDF)
Download	workshop	(EPUB)
Git	repository	on	github

Authors
Marc	Jansen	(jansen@terrestris.de)

Daniel	Koch	(koch@terrestris.de)

MoMo	workshop

7Introduction

http://terrestris.github.io/momo3-ws/
http://terrestris.github.io/momo3-ws/momo3-ws.zip
http://terrestris.github.io/momo3-ws/momo3-ws_en.pdf
http://terrestris.github.io/momo3-ws/momo3-ws_en.epub
https://github.com/terrestris/momo3-ws
mailto:jansen@terrestris.de
mailto:koch@terrestris.de

Overview
This	workshop	is	intended	to	introduce	certain	key	software	packages	behind	the	current	and	upcoming	MoMo	GeoPortal.

The	current	version	of	the	soon-to-be-updated	MoMo	Geoportal

In	this	overview	section	we'll	learn	about	the	following	topics

Prerequisites
References
Setup
Data

MoMo	workshop

8Overview

http://iwrm-momo.de/geoportal/client/gisclient/index-dev.html?applicationId=22

Prerequisites

Start	the	workshop

This	workshop	is	intended	to	be	executed	in	combination	with	an	Linux	image	delivered	on	an	USB	flash	drive	especially	prepared	for
this	workshop.	To	run	this	image	(and	the	workshop)	please	follow	these	steps:

In	case	you	didn't	receive	a	bootable	USB	with	the	above	system,	you	can	grab	an	image	under	the	following	URL:
http://files.terrestris.de/momo-master.tar.gz.	This	file	is	roughly	2.2	GB	big,	and	once	it	is	decompressed	it	will	have	a	size	of
16GB.

1.	 Connect	the	provided	USB	flash	drive	to	your	computer	and	turn	on	the	computer.
2.	 Normally	you	should	see	the	Linux	Mint	boot	screen	similar	to	the	image	below	after	only	a	few	seconds.

Linux	Mint	bootscreen.

Note:	If	your	computer	isn't	booting	Linux	Mint,	please	ensure	your	PC	is	able	and	correctly	configured	to	boot	from	an	USB	device.
To	do	so,	access	your	BIOS	by	pressing		DEL		or		F2		during	the	early	boot	process	(usually	you	will	see	the	correct	key	displayed	on-
screen	during	the	boot	process).	Press	the	required	key	at	the	correct	time	and	your	computer's	BIOS	will	appear.	Once	you're	in	the
BIOS,	try	to	find	a	menu	called	something	like		Boot		or	similar.	Navigate	to	this	menu	and	look	for	some	sort	of	an	entry	called		Boot
Option	Priorities		or	similar.	Usually	you	will	find	the	boot	order	as	a	priority	list	in	which	you	can	move	the	USB	device	boot	option
up	to	the	top	of	this	list.	Now	save	your	changes	and	exit	the	BIOS	to	restart	your	computer.

Congratulations!	Now	you	are	ready	to	start	the	workshop!	

MoMo	workshop

9Prerequisites

http://files.terrestris.de/momo-master.tar.gz

Workshop	reference	book
Here	you	will	find	some	useful	informations	about	the	workshop	image.

Credentials

Linux:
User:		momo	
Password:		momo	

GeoServer:
User:		admin	
Password:		geoserver	

PostgreSQL:
User:		momo	
Password:		momo	

Useful	paths

Your	home	directory:		/home/momo	
Workshop	directory:		/home/momo/materials	
Tomcat	webapp	directory:		/opt/tomcat/webapps	

Useful	terminal	commands

As	you	may	not	familiar	with	Linux	you	will	find	a	small	list	containing	the	most	helpful	terminal	commands	used	in	this	workshop.

Navigation

Navigate	to	a	directory:		$	cd	{PATH_TO_DIRECTORY}	
Navigate	to	the	upper	directory:		$	cd	..	
Navigate	to	your	home	directory:		$	cd	~	
Navigate	to	the	root	directory:		$	cd	/	
List	all	files	and	directories	of	a	folder	(inlong	list	format):		$	ls	-l		or		$	ll	

File	and	directory	manipulation

Creation
Of	a	file:		$	touch	{FILE_PATH_AND_NAME}	
Of	a	directory:		$	mkdir	{DIRECTORY_PATH_AND_NAME}	

Removal
Of	a	file:		$	rm	{FILE_PATH_AND_NAME}	
Of	a	directory:		$	rm	-	rf	{DIRECTORY_PATH_AND_NAME}	

Change	ownership:
For	a	single	file		$	chown	{GROUP_NAME}:{USER_NAME}	{FILE_PATH_AND_NAME}	
For	a	completer	folder	(recursively)		$	chown	-R	{GROUP_NAME}:{USER_NAME}	{FILE_PATH_AND_NAME}	

Execution

Make	a	file	executable:		$	chmod	+x	{FILE_PATH_AND_NAME}	

MoMo	workshop

10References

Run	an	executable	file:		$./myExecutable.sh	

Compress	and	extract

Create	an	archive:		$	tar	-cvzf	{ARCHIVE_FILE_NAME}.tar.gz	{DIRECTORY_TO_ARCHIVE}	
Extract	an	archive:		$	tar	-xvzf	{ARCHIVE_FILE_NAME}.tar.gz	

Services

Start/Stop/Restart	PostgreSQL:		$	sudo	service	postgresql	start|stop|restart	
Start/Stop/Restart	Apache:		$	sudo	service	apache2	start|stop|restart	
Start/Stop/Restart	Tomcat:		$	sudo	start|stop|restart	tomcat	

Other	useful	commands

Execute	command	with	super	user	(root)	permissions	:		$	sudo	{COMMAND_TO_EXECUTE}	
Show	manual	of	a	tool:		$	man	{COMMAND_TOOL_NAME}	
Show	terminal	history:		$	history	
Live-monitoring	of	a	changing	file	(e.g.	a	logfile):		$	tail	-f	{FILE_PATH_AND_NAME}	
Execute	the	last	command	used:		$!!	

Exercises

1.	 Open	the	terminal	by	clicking	the		Terminal		icon	()	in	the	bottom	toolbar.
2.	 Navigate	to	your	home	directory	and	create	a	folder	named		notes		by	typing:

	$	cd	~

	$	mkdir	notes

3.	 Go	to	the	newly	created	folder	and	create	a	file	named		workshop-notes.md		by	typing:

$	cd	notes/

$	touch	workshop-notes.md

4.	 Open	this	file	with		gedit		and	enter		Linux	is	great!		by	typing:

$	gedit	workshop-notes.md

MoMo	workshop

11References

Workshop	Linux	Mint	Setup
The	provided	workshop	Linux	image	is	just	a	Linux	Mint	with	pre-installed	and	configured	programs	and	tools.	This	page	lists	the
changes	to	the	default	system	configuration	only	and	is	no	integral	part	of	the	workshop.

Operating	system:
Linux	Mint	17.3	Cinnamon	Edition	(32bit)

Additionally	installed	software:
Apache	2

Installed	from	package	manager
Linked	home	directory		/home/momo		to	http://localhost:80/momo
Added	to	autostart

Apache	Tomcat	8
Installed	from	here
Added	to	autostart

GeoServer	2.8.2
Installed	from	here
Installed	plugins:

pyramid-plugin
wps-plugin
oracle-plugin
importer-plugin

Published	via	Apache	2	on	port	80
http://localhost:80/geoserver

Atom	Editor
Installed	from	here

Chrome
Installed	from	here

PostgreSQL	/	PostGIS
Installed	from	package	manager
Added	to	autostart

git
Installed	from	package	manager

nvm
Installed	from	here

bash-git-prompt
Installed	from	here

QGIS
Installed	from	here

GDAL
Installed	from	package	manager

Removed	packages:

		$	sudo	apt-get	remove	thunderbird	vlc	vlc-plugin-notify	vlc-plugin-pulse	\

				vlc-data	vlc-nox	totem-common	brasero	banshee	gimp	hexchat	pidgin	totem	\

				seahorse	cowsay	mint-backgrounds-qiana	mint-backgrounds-rafaela	\

				mint-backgrounds-rebecca	mint-backgrounds-rosa	sox	ttf-indic-fonts-core	\

				ttf-punjabi-fonts	ttf-wqy-microhei	fonts-kacst	fonts-kacst-one	\

				fonts-khmeros-core	fonts-lao	fonts-lklug-sinhala	fonts-thai-tlwg	\

				fonts-tibetan-machine	fonts-tlwg-garuda	fonts-tlwg-kinnari	fonts-tlwg-loma	\

				fonts-tlwg-norasi	fonts-tlwg-purisa	fonts-tlwg-sawasdee	fonts-wqy-microhe	\

				fonts-noto	fonts-sil-abyssinica	fonts-sil-padauk	fonts-takao-pgothic	\

				fonts-tlwg-umpush	fonts-tlwg-waree	gimp-help-en	firefox	firefox-locale-en	\

				simple-scan	transmission-common	transmission-gtk	mintwelcome

MoMo	workshop

12Setup

http://blog.linuxmint.com/?p=2947
https://httpd.apache.org/
http://localhost:80/momo
https://tomcat.apache.org/download-80.cgi
http://apache.mirror.digionline.de/tomcat/tomcat-8/v8.0.30/bin/apache-tomcat-8.0.30.tar.gz
http://geoserver.org/release/stable/
http://sourceforge.net/projects/geoserver/files/GeoServer/2.8.2/geoserver-2.8.2-war.zip
http://sourceforge.net/projects/geoserver/files/GeoServer/2.8.2/extensions/geoserver-2.8.2-pyramid-plugin.zip
http://sourceforge.net/projects/geoserver/files/GeoServer/2.8.2/extensions/geoserver-2.8.2-wps-plugin.zip
http://sourceforge.net/projects/geoserver/files/GeoServer/2.8.2/extensions/geoserver-2.8.2-oracle-plugin.zip
http://sourceforge.net/projects/geoserver/files/GeoServer/2.8.2/extensions/geoserver-2.8.2-importer-plugin.zip
http://localhost:80/geoserver
https://atom.io/
http://www.webupd8.org/2014/05/install-atom-text-editor-in-ubuntu-via-ppa.html
https://www.google.de/chrome/browser/desktop/
https://www.google.com/chrome/browser/desktop/index.html
http://www.postgresql.org/
http://postgis.net/
https://git-scm.com/
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/magicmonty/bash-git-prompt
https://github.com/magicmonty/bash-git-prompt
http://www.qgis.org/
https://www.qgis.org/de/site/forusers/alldownloads.html#debian-ubuntu
http://www.gdal.org/

Removed	remaining	dependencies	no	longer	needed

		$	sudo	apt-get	autoremove

Updated	and	upgraded	packges	to	latest	version

		$	sudo	apt-get	-y	update	&&	sudo	apt-get	-y	upgrade

In	case	you	didn't	receive	a	bootable	USB	with	the	above	system,	you	can	grab	an	image	under	the	following	URL:
http://files.terrestris.de/momo-master.tar.gz	This	file	is	roughly	2.2	GB	big,	and	once	it	is	decompressed	it	will	have	a	size	of
16GB.
Data	used	in	the	workshop:

Natural	Earth	Large	scale	data,	1:10m
Cultural

Download	here
Physical

Download	here
Raster	(Ocean	bottom)

Download	here
Extracted	to		~/materials/natural_earth	

OSM	sample	export	Mongolia
Download	here
Extracted	to		~/materials/osm_mongolia	

MoMo	workshop

13Setup

http://files.terrestris.de/momo-master.tar.gz
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/cultural/10m_cultural.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/physical/10m_physical.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/OB_LR.zip
http://download.geofabrik.de/asia/mongolia-160101.shp.zip

Workshop	data
This	section	shows	the	data	and	the	data	sources	we'll	us	in	the	workshop.

Natural	Earth	(~/materials/natural_earth)

The	Natural	Earth	dataset	is	a	free	collection	of	vector	and	raster	data	published	by	the	North	American	Cartographic	Information
Society	to	encourage	mapping.	In	this	workshop	we	will	use	the	datasets		Cultural	,		Physical		and		Raster		in	large	scale	(1:10m).

OpenStreetMap	(~/materials/osm_mongolia)

OpenStreetMap	is	a	free	editable	map	database	of	the	world.	In	this	workshop	we	use	a	small	excerpt	of	the	huge	OSM	database
focused	on	mongolia	which	is	provided	by	the	company	geofabrik	as	a	collection	of	single	shapefiles.

MoMo	workshop

14Data

http://www.naturalearthdata.com/downloads/
http://www.openstreetmap.org/
http://www.geofabrik.de/
http://download.geofabrik.de/asia/mongolia-160101.shp.zip

GeoServer

GeoServer	is	an	Open	Source	software	server	written	in	Java	that	allows	users	to	share	and	edit	geospatial	data.	Designed	for
interoperability,	it	publishes	data	from	any	major	spatial	data	source	using	open	standards.	GeoServer	is	the	reference	implementation	of
the	Open	Geospatial	Consortium	(OGC)	Web	Feature	Service	(WFS)	and	Web	Coverage	Service	(WCS)	standards,	as	well	as	a	high
performance	certified	compliant	Web	Map	Service	(WMS).	GeoServer	forms	a	core	component	of	the	Geospatial	Web.

In	this	module	we	will	focus	on	the	geodata-management	using	the	GeoServer	administration	frontend.	Thus	we	will	learn	both	how	to
set	the	most	common	configure	options	and	how	to	load,	publish,	style,	and	share	geospatial	data	with	GeoServer.

The	workshop	is	subdivided	into	two	main	categories:

GeoServer	Basics	(Administration	&	Publishing)
GeoServer	Advanced	(REST	&	GeoWebCache)

Parts	of	this	workshop	are	heavily	inspired	by	workshops	prepared	by	the	GeoServer	community	and	boundless.	Feel	free	to	look
at	these	sources	for	further	informations.

MoMo	workshop

15GeoServer

http://docs.geoserver.org/latest/en/user/index.html
https://github.com/boundlessgeo/workshops/blob/master/workshops/geoserver/intro/slides/slides.rst

GeoServer	Basics
In	this	section	we'll	learn	how	to	deal	with	the	most	common	use	cases	when	working	with	the	GeoServer:	Manage	the	running
GeoServer	instance	by	adjusting	the	most	important	configuration	settings	and	publishing	geospatial	data.

Administration	settings
Publishing	geospatial	data

MoMo	workshop

16Basics

Administration
This	module	will	give	you	a	brief	introduction	into	the	GeoServer	administration	frontend	where	we'll	focus	on	the	mainly	used
configuration	settings.	The	basis	structure	of	the	following	chapters	is	directly	inspired	by	GeoServers	frontend	composition	(Note:	The
	Data		and		Tile	Caching		sections	will	be	treated	in	the	particular	chapters	Publishing	and	GeoWebCache).

Login	and	frontend	overview
About	&	Status
Services
Settings
Security

MoMo	workshop

17Administration

Login	and	frontend	overview
GeoServer	includes	a	web-based	administration	interface.	Most	GeoServer	configuration	can	be	done	through	this	interface,	without	the
need	to	edit	configuration	files	by	hand	or	use	an	API.	This	section	will	give	a	brief	overview	to	the	web	interface.	Subsequent	sections
will	use	the	web	interface	in	greater	detail.

Welcome	page

To	open	the	GeoServer	UI	open	the	following	address	in	your	browser:

http://localhost/geoserver

The	initial	page	is	called	the		Welcome	page	.	To	return	to	the	Welcome	page	from	anywhere,	just	click	the	GeoServer	logo	in	the	top
left	corner	of	the	page.

GeoServer	welcome	page

While	the	unauthenticated/anonymous	Welcome	page	is	not	void	of	features,	it	really	just	lets	you	see	things	(configured	on	geoserver)
but	not	touch	them	(and	make	configuration	changes).

For	security	reasons,	most	GeoServer	configuration	tasks	require	you	to	be	logged	in	first.	By	default,	the	GeoServer	administration
credentials	are		admin		and		geoserver	,	although	this	can	and	should	be	changed	(see	chapter	Security).

Login

Log	in	into	GeoServer	by	using	the	default	administration	credentials	from	above.

MoMo	workshop

18Administration

http://localhost/geoserver

GeoServer	welcome	page

After	the	login,	many	more	options	will	be	displayed.

Basic	layout

Use	the	links	on	the	left	side	column	to	manage	GeoServer,	its	services,	data,	security	settings	and	more.	Also	on	the	main	page	are
direct	links	to	the	capabilities	documents	for	each	service	(WFS,	WMS,	WCS).	We'll	be	using	the	links	on	the	left	under		Data		-	among
them	Layer	Preview,	Workspaces,	Stores,	Layers,	Layer	Groups,	and	Styles	-	very	often	in	this	workshop,	so	it	is	good	to	familiarize
yourself	with	their	location.	Thus	we'll	start	this	module	in	the	following	chapters	by	introducing	the	frontend	structure.

MoMo	workshop

19Administration

About	and	Status
This	section	of	the	web	administration	interface	provides	a	high	level	overview	of	the	running	application.	Contact	information	for
OGC	services	is	also	managed	here.

Server	Status
GeoServer	Logs
Contact	Information
About	GeoServer

MoMo	workshop

20Administration

Server	Status
The	Server	Status	page	shows	you	many	metainformation	about	the	current	GeoServer	configuration	and	overall	status.

Server	status	page.

It	provides	a	useful	diagnostic	tool	in	a	testing	and	production	environment	and	should	be	your	first	place	to	go	if	are	facing	any
problem	with	your	running	GeoServer	instance.

Certainly	it's	always	useful	to	have	a	look	at	the	Logs	additionally.

Status	indicators

The	following	table	describes	the	current	status	indicators	(as	described	here).

MoMo	workshop

21Administration

http://docs.geoserver.org/latest/en/user/configuration/status.html#config-serverstatus

Option Description

Data	directory The	absolute	path	to	your	data	directory.

Locks

A	WFS	has	the	ability	to	lock	features	to	prevent	more	than	one	person	from	updating	the	feature	at	one
time.	If	data	is	locked,	edits	can	be	performed	by	a	single	WFS	editor.	When	the	edits	are	posted,	the
locks	are	released	and	features	can	be	edited	by	other	WFS	editors.	A	zero	in	the	locks	field	means	all
locks	are	released.	If	locks	is	non-zero,	then	pressing		Free	locks		releases	all	feature	locks	currently
held	by	the	server,	and	updates	the	field	value	to	zero.

Connections Refers	to	the	numbers	of	vector	stores,	in	the	above	case	6,	that	were	able	to	connect.

Memory	Usage The	amount	of	memory	currently	used	by	GeoServer.	Clicking	on	the		Free	Memory		button,	cleans	up
memory	marked	for	deletion	by	running	the	garbage	collector.

JVM	Version Denotes	which	version	of	the	JVM	(Java	Virtual	Machine)	is	been	used	to	power	the	server.

Available	Fonts A	list	of	all	fonts	GeoServer	has	access	to.	These	can	be	referenced	in	the	layer	style.

Native	JAI
GeoServer	uses	Java	Advanced	Imaging	(JAI)	framework	for	image	rendering	and	coverage
manipulation.	When	properly	installed	(true),	JAI	makes	WCS	and	WMS	performance	faster	and	more
efficient.

Native	JAI	ImageIO GeoServer	uses	JAI	Image	IO	(JAI)	framework	for	raster	data	loading	and	image	encoding.	When
properly	installed	(true),	JAI	Image	I/O	makes	WCS	and	WMS	performance	faster	and	more	efficient.

JAI	Maximum
Memory Expresses	in	bytes	the	amount	of	memory	available	for	tile	cache.

JAI	Memory	Usage Run-time	amount	of	memory	is	used	for	the	tile	cache.	Clicking	on	the		Free	Memory		button,	clears
available	JAI	memory	by	running	the	tile	cache	flushing.

JAI	Memory
Threshold

Refers	to	the	percentage,	e.g.	75,	of	cache	memory	to	retain	during	tile	removal.	JAI	Memory
Threshold	value	must	be	between	0.0	and	100.

Number	of	JAI	Tile
Threads The	number	of	parallel	threads	used	by	to	scheduler	to	handle	tiles.

JAI	Tile	Thread
Priority

Schedules	the	global	tile	scheduler	priority.	The	priority	value	is	defaults	to	5,	and	must	fall	between	1
and	10.

ThreadPoolExecutor
Core	Pool	Size

The	imageMosaic	reader	may	load,	in	parallel,	different	files	that	make	up	the	mosaic	by	means	of	a
ThreadPoolExecutor.	A	global	ThreadPoolExecutor	instance	is	shared	by	all	the	readers	supporting	and
using	concurrent	reads.	Here	the	current	core	pool	size	of	the	ThreadPoolExecutor	is	listed.

ThreadPoolExecutor
Max	Pool	Size Here	the	current	maximum	core	pool	size	of	the	ThreadPoolExecutor	is	listed.

ThreadPoolExecutor
Keep	Alive	Time
(ms)

The	time	to	be	waited	by	the	ThreadPoolExecutor	before	terminating	an	idle	thread	in	case	there	are
more	threads	than	available	in	the	core	pool	size.

Update	Sequence Refers	to	the	number	of	times	the	server	configuration	has	been	modified.

Resource	Cache

GeoServer	does	not	cache	data,	but	it	does	cache	connection	to	stores,	feature	type	definitions,	external
graphics,	font	definitions	and	CRS	definitions	as	well.	The		Clear		button	forces	those	caches	to	empty
and	makes	GeoServer	reopen	the	stores	and	re-read	image	and	font	information,	as	well	as	the	custom
CRS	definitions	stored	in		${GEOSERVER_DATA_DIR}/user_projections/epsg.properties	.

Configuration	and
catalog

GeoServer	keeps	in	memory	all	of	its	configuration	data.	If	for	any	reason	that	configuration
information	has	become	stale	(e.g.	an	external	utility	has	modified	the	configuration	on	disk)	the
	Reload		button	will	force	GeoServer	to	reload	all	of	its	configuration	from	disk.

Exercise

Open	up	the		Server	Status		page	on	your	GeoServer	and	press	the	button		Free	memory		besides		Memory	Usage	.	What	do	you
observe?

MoMo	workshop

22Administration

MoMo	workshop

23Administration

GeoServer	Logs
GeoServer	displays	the	contents	of	the	application	logs	directly	through	the	web	interface.	Reading	the	logs	can	be	very	helpful	when
troubleshooting.	To	view	the	logs,	click	on		GeoServer	Logs		on	the	left	under		About	&	Status	.

Logging	page.

Exercise

Open	up	the		GeoServer	Logs		section	and	investigate	the	last	entries	in	your	logfile.	Can	you	find	any	conspicuous	or	interesting
entry?

MoMo	workshop

24Administration

Contact	Information
Each	OGC	web	service	served	by	the	GeoServer	contains	the	contact	details	associated	with	the	server	as	part	of	their	capabilities
document.	You	can	read	and	manipulate	these	information	in	the	section		Contact	Information		under		About	&	Status	.

Contact	page.

Exercise

Fill	in	your	contact	informations	in		Contact	Information		page.
Click		Submit	.
Open	the	following	link	to	request	the		GetCapabilites		document	provided	by	your	GeoServer	instance	and	verify	your	changes:

http://localhost/geoserver/ows?SERVICE=WMS&REQUEST=GetCapabilities&VERSION=1.1.0

You	can	also	request	the	above	GetCapabilities	document	by	visiting	the	Welcome	Page	and	select	the	links	on	the	right	handed
side.

MoMo	workshop

25Administration

http://localhost/geoserver/ows?SERVICE=WMS&REQUEST=GetCapabilities&VERSION=1.1.0

MoMo	workshop

26Administration

About	GeoServer
The	about	page	lists	general	informations	about	the	GeoServer	you're	running.	These	listings	are	espacially	helpful,	if	you	want	to
contact	any	support	or	if	you	want	to	know	the	installed	GeoServer	version	for	getting	compatible	community	modules	and	extensions.

Note:	You'll	see	a	link		Documentation		at	the	end	of	the	page.	This	link	will	guide	you	to	the	official	documentation	of	the	project	and
is	a	very	helpful	address	if	you	need	any	information	about	GeoServer.

About	page.

Exercise

Follow	the	mentioned		Documentation		link	and	have	a	quick	look	around	to	see	the	valuable	resources	available	here!

MoMo	workshop

27Administration

Services
The		Services		section	is	for	configuring	the	services	published	by	GeoServer,	where	we	can	manage:

The	metadata,	resource	limits,	and	SRS	availability	for	WCS.
The	metadata,	feature	publishing,	service	level	options,	and	data-specific	output	for	WFS.
The	metadata,	resource	limits,	SRS	availability,	and	other	data-specific	output	for	WMS.

The	following	exercises	will	give	you	a	brief	introduction	in	the	most	important	administration	options	available	here.

For	further	instructions	please	have	a	look	at	the	official	GeoServer	documentation.

Limit	SRS	output	list

The	default	GetCapabilities	document	contains	a	comprehensive	list	of	all	available	spatial	reference	systems	(SRS)	of	your	GeoServer
WMS	server	instance.	Generally	it	is	not	needed,	that	you	list	all	supported	systems	as	you	typically	want	to	publish	data	in	an	limited
list	of	projections	only.	Furthermore	limiting	this	list	will	reduce	the	file	size	of	the	responding	GetCapabilites	document!

Exercise

Open	the	following	URL	in	your	browser	to	open	the	GetCapabilites	document	of	your	GeoServer	instance:	GetCapabilities
In	the	resulting	XML	document	find	the	element		Layer		which	contains	the	large	list	(~6000	lines)	of	all	supported	EPSG
projections.

In	the	next	step	we'll	limit	this	list	to	contain	the	systems		EPSG:4326	,		EPSG:3857		and		EPSG:900913		only.

Navigate	to		Services		❭		WMS	.
Find	the	description	field	entitled	with		Limited	SRS	list		and	fill	in		4326,	3857,	900913	.

Click		Submit	.
Reopen	the	GetCapabilites	document	and	you	will	note,	that	the	document	is	reduced	by	a	huge	amount	of	lines.

Disable	WFS-T
GeoServer	is	configured	to	act	as	a	fully	transactional	Web	Feature	Service	server	per	default.	A	transactional	WFS	allows	creation,
deletion,	and	updating	of	features.	This	implies,	that	each	published	feature	type	can	be	edited	by	any	client.	Generally	you	don't	want
to	allow	clients	to	edit	your	data	published	with	GeoServer	(unless	you	really	want	to	allow	it),	especially	if	your	GeoServer	is
accessible	globally	through	the	Internet.	In	the	next	iteration	we're	going	to	disable	the	WFS-T	functionality.

Exercise

Navigate	to		Services		❭		WFS	.
Find	the	checkbox	group	entitled	with		Service	Level		and	select	the	level		Basic		to	disable	WFS-T	compatibility.

MoMo	workshop

28Administration

http://docs.geoserver.org/latest/en/user/services/index.html#services
http://localhost/geoserver/ows?REQUEST=GetCapabilities&SERVICE=WMS&VERSION=1.1.0
http://localhost/geoserver/ows?REQUEST=GetCapabilities&SERVICE=WMS&VERSION=1.1.0

Click		Submit	.
Optional:	Import	a	given	WMS	layer	into	QGIS	and	try	to	edit	it.

MoMo	workshop

29Administration

Settings
The		Settings		section	involves	configuration	settings	that	apply	to	the	entire	server.	Again,	instead	of	explaining	each	checkbox,	we'll
focus	on	the	most	important	administration	tools	available	in	this	section	and	its	subsections.

For	further	instructions	please	have	a	look	at	the	official	GeoServer	documentation.

Set	handle	data	and	configuration	problems

This	setting	determines	how	GeoServer	will	respond	when	a	layer	becomes	inaccessible	for	some	reason.	By	default,	when	a	layer	has
an	error	(for	example,	when	the	default	style	for	the	layer	is	deleted),	a	service	exception	is	printed	as	part	of	the	capabilities	document,
making	the	document	invalid.	For	clients	that	rely	on	a	valid	capabilities	document,	this	can	effectively	make	a	GeoServer	appear	to	be
"offline".	As	administrator	you	may	prefer	to	configure	GeoServer	to	simply	omit	the	problem	layer	from	the	capabilities	document,
thus	retaining	the	document	integrity	and	allowing	clients	to	connect	to	other	published	layers.

Exercise

Go	to		Settings		❭		Global	.
Select		Skipping	misconfigured	layers		in	the	combo	entitled	with		Handle	data	and	configuration	problems	in	capabilities
documents	by...	.

Click		Submit	.

Reduce	the	number	of	decimals

To	reduce	the	output	size	returned	in	a	GetFeature	response	(and	therefore	optimizing	the	bandwith)	we	can	restrict	the	number	of
decimal	places	in	a	GetFeature	response.	Here	we	will	set	the	value	to	2.

Exercise

Go	to		Settings		❭		Global	.
Set		Number	of	Decimals		to	2.

Click		Submit	.

Change	logging	level

At	some	point	in	your	production	(or	development)	usage	of	GeoServer	you'll	encounter	a	problem	where	you'll	need	to	get	further	and
detailed	informations	to	find	the	cause	of	the	problem.	In	this	case	you	can	increase	the	level	of	logging.	The	following	steps	will	guide
you	how	to	set	the	logging	level	to	a	verbose-like	level	containing	valuable	informations	about	the	image	processing	process.

Exercise

Go	to		Settings		❭		Global	.
Select	the	check	box	beside		Verbose	Exception	Reporting		to	return	service	exceptions	with	full	Java	stack	traces.
Find	the	description	field	entitled	with		Logging	Profile		and	select	the	profile		VERBOSE_LOGGING.properties		to	enable	the
DEBUG	level	logging	on	GeoTools	and	GeoServer.

MoMo	workshop

30Administration

http://docs.geoserver.org/latest/en/user/webadmin/index.html#settings

Click		Submit	.
To	validate	the	changes	please	open	the	OpenLayers	layer	preview	for	a	layer	of	your	choice	(Data		❭		Layer	Preview)	and
zoom	slightly	into	the	map.
Go	to		About	&	Status		❭		GeoServer	Logs		to	open	up	the	logfile	and	scroll	down	to	the	end	of	the	file.	Have	a	look	at	the
timestamp	and	you'll	notice	plenty	of	logs	for	just	a	simple	GetMap	request	(you	did	in	the	layer	preview).

MoMo	workshop

31Administration

As	the	given	settings	are	not	really	needed	for	the	moment	(we	aren't	facing	any	problems)	we	can	reset	the	logging	level	to
	DEFAULT_LOGGING.properties	.

MoMo	workshop

32Administration

Security
GeoServer	has	a	robust	security	subsystem,	modeled	on	Spring	Security.	Most	of	the	security	features	are	available	through	the	Web
administration	interface.	A	detailed	explanation	of	all	security	options	is	far	beyond	the	goals	of	this	workshop	and	the	default	settings
are	almost	good	enough	for	the	basic	usage	of	GeoServer	as	well.	Here	we'll	focus	on	the	most	important	fact	after	installing	a
GeoServer:	Changing	the	default		admin		user	and	master	password.	(You	may	have	recognized	the	appropriate	warnings	on	the
GeoServer	welcome	page.)

For	further	instructions	please	have	a	look	at	the	official	GeoServer	documentation.

Change	master	password

The	master	password	serves	two	purposes:

Protect	access	to	the	keystore.
Protect	access	to	the	GeoServer	Root	account	(The	root	account	is	always	active,	regardless	of	the	state	of	the	security
configuration.	Much	like	its	UNIX-style	counterpart,	this	account	provides	"super	user"	status,	and	is	meant	to	provide	an
alternative	access	method	for	fixing	configuration	issues.	The	user	name	for	the	root	account	is		root	.	Its	name	cannot	be
changed.).

Exercise

To	change	the	master	password	follow	these	steps:

Go	to		Security		❭		Passwords	.
Select		Change	password	.
In	the	upcoming	form	use	the	following	values	to	change	the	password	to		momo-ws	:

Current	password:	geoserver
New	password/Confirmation:	momo-ws	(Please	use	a	more	secure	password	in	a	real	world	GeoServer	usage!)

Click		Change	Password	.

Change	admin	user	password

Exercise

To	change	the	password	for	the	user		admin		please	follow	these	steps:

Go	to		Security		❭		Users,	Groups,	Roles	.
Open	panel		Users/Groups		where	you'll	see	a	list	of	all	current	users	of	your	GeoServer	instance.	At	the	moment	(and	in	most
future	applications)	you'll	find	the	user		admin		only.
Select	the	user		admin		by	clicking	on	its	username.
In	the	upcoming	form	use	the	following	values	to	change	the	password	to		momo-ws	:

Password/Confirm	Password:	momo-ws	(Please	use	a	more	secure	password	in	a	real	world	GeoServer	usage!)

Click		Save	.

MoMo	workshop

33Administration

http://docs.geoserver.org/latest/en/user/security/webadmin/index.html#security-webadmin

MoMo	workshop

34Administration

Publishing
In	this	section	we'll	learn	the	core	principals	about	the	GeoServer	data	management	and	how	to	prepare	and	import	(vector-/raster)	data
into	GeoServer	and	how	to	publish	it	as	vector,	raster	and	group	layer.

Publish	vector	layer
Publish	raster	layer
Publish	group	layer

MoMo	workshop

35Publishing

Prerequisites
Before	we	can	start	importing	and	reading	data	in	this	modules,	we	have	to	create	a	new	database	on	the	(already	installed)	PostgreSQL
database	server	as	data	source	for	new	layers.	Thus	we	will	use	the	administration	tool		pgAdmin	III	.	Let's	start	by	opening	it:

Click		Menu		in	the	lower	left	corner	and	search	for		pgadmin	

In	the	resulting	list	select		pgAdmin	III		()	to	open	the	tool.

Add	a	new	server	connection	in	pgAdmin

Once	pgAdmin	has	started	we	can	create	a	new	connection	to	our	PostgreSQL	database	server:

Create	a	new	server	connection	by	selecting		File		❭		Add	Server		in	the	top	menu	bar	and	enter	the	following:
Name:	momo-workshop
Host:	localhost
Port:	5432
Username:	momo
Password:	momo
Store	password:	checked

Click		OK	

Creating	a	database
Now	we	can	connect	to	this	server	by	a	double	click	on	the	newly	created	entry	in	the	left	hand	sided		Object	browser		(or	open	the
context	menu	for	this	entry	and	select		Connect		as	shown	below).

MoMo	workshop

36Publishing

Within	the	next	steps	we	will	create	a	new	database	on	this	database	server:

Open	the	SQL-Query	window	by	clicking	the	icon	 	in	the	upper	toolbar.	Note:	If	the	icon	is	greyed	out,	select	the	existing
database		postgres		first.
Copy	the	following	SQL	block	into	the	SQL-Query	window:

		CREATE	DATABASE	db_momo_ws

				WITH	OWNER	=	momo

				ENCODING	=	'UTF8'

				TABLESPACE	=	pg_default

				CONNECTION	LIMIT	=	-1;

Click		Execute	query		()	in	the	upper	toolbar	to	run	the	query.
After	successful	execution	go	back	to	the		Object	browser	,	select	the	server	and	refresh	the	actual	view	(by	pressing		Refresh

the	selected	object		()	in	the	top	toolbar)	and	ensure	you	have	a	new	database	entry	named		db_momo_ws		present.
Close	the	SQL-Query	window.

Creating	a	schema

Once	the	database	is	created,	we'll	create	a	new	schema	in	this	database.	This	schema	will	be	used	to	store	any	geodata	table	we	are
going	to	import	in	this	workshop.

Select	the	newly	created	database		db_momo_ws		in	the		Object	browser		and	open	the	SQL	window	().	If	you	haven't	closed
the	SQL-Query	window	before,	please	verify	that	you	are	connected	to	the	correct	database	in	the	upper	toolbar.	Otherwise	all
subsequent	SQL	queries	will	be	executed	on	the	wrong	database!
Copy	the	following	SQL	block	into	the	SQL-Query	window	to	create	a	new	schema	named		geodata	:

		CREATE	SCHEMA	geodata

				AUTHORIZATION	momo;

Click		Execute	query		()	to	run	the	query.
Refresh	the		Object	browser		and	ensure	the	new	schema	is	being	created	in	the	database		db_momo_ws	.

Enable	spatial	functionality
In	the	final	step	we	will	add	support	for	geographic	objects	by	enabling	the	spatial	database	extension	PostGIS	for	our	database
	db_momo_ws	.

Open	the	SQL	window	(if	not	already	opened)	and	paste	in	the	following	SQL	block	to	spatially	enable	the	database		db_momo_ws	:

		CREATE	EXTENSION	postgis;

Click		Execute	query		to	run	the	query.
Ensure	the	extension	is	being	successfully	installed	by	executing	the	following	query:

		SELECT	PostGIS_full_version();

MoMo	workshop

37Publishing

The	corresponding	output	should	look	like:

		"POSTGIS="2.1.2	r12389"	GEOS="3.4.2-CAPI-1.8.2	r3921"	PROJ="Rel.	4.8.0,	6	March	2012"	GDAL="GDAL	1.10.1,	released	2013/08/26"	LIBXML="2.9.1"	LIBJSON="UNKNOWN"	RASTER"

MoMo	workshop

38Publishing

Workspace
A	workspace	(sometimes	referred	to	as	a	namespace)	is	the	name	for	a	notional	container	for	grouping	similar	data	together.	It	is
designed	to	be	a	separate,	isolated	space	relating	to	a	certain	project.	Using	workspaces,	it	is	possible	to	use	layers	with	identical	names
without	conflicts.

Workspaces	are	usually	denoted	by	a	prefix	to	a	layer	name	or	store	name.	For	example,	a	layer	called	streets	with	a	workspace	prefix
called	nyc	would	be	referred	to	by	nyc:streets.	This	would	not	conflict	with	another	layer	called	streets	in	another	workspace	called	dc
(dc:streets).

Stores	and	layers	must	all	have	an	associated	workspace.	Styles	may	optionally	be	associated	with	a	workspace,	but	can	also	be	global.

Technically,	the	name	of	a	workspace	is	a	URI,	not	the	short	prefix.	A	URI	is	a	Uniform	Resource	Identifier,	which	is	similar	to	a	URL,
but	does	not	need	to	resolve	to	a	web	site.	In	the	above	example,	the	full	workspace	could	have	been		http://nyc		in	which	case	the	full
layer	name	would	be		http://nyc:streets	.	GeoServer	intelligently	replaces	the	workspace	prefix	with	the	full	workspace	URI,	but	it
can	be	useful	to	know	the	difference.

Creating	a	new	workspace

In	this	section	we	are	going	to	create	a	new	workspace	called		momo	.

Navigate	to		Data		❭		Workspaces	.
Click		Add	new	workspace		and	enter	the	following:

Name:	momo
Namespace	URI:	http://localhost:80/momo
Default	Workspace:	checked

Click		Submit	

Add	new	workspace

The	workspace	has	been	created	and	is	now	active.	The	green	check	mark	indicates	that	the	workspace	is	the	default	one.

MoMo	workshop

39Publishing

http://localhost:80/momo

Vector	layers
In	this	section	we	will	learn	how	to	import	a	shapefile	to	a	spatially	enabled	PostgreSQL	database,	set	up	a	new	vector	store	and	publish
a	new	vector	layer	with	GeoServer.

Import	shapefile	to	database
Create	a	new	PostgreSQL/PostGIS	datastore
Publish	a	new	vector	layer
Preview	the	layer	using	GeoServer's	layer	preview
Changing	the	layer	style

MoMo	workshop

40Publishing

Import
Our	workshop	data	(see	here)	is	actually	given	as	a	collection	of	single	shapefiles.	In	order	to	enhance	the	performance	while	read	and
write	processes	and	enable	writing	at	all	(shapefiles	can't	be	manipulated	via	WFS-T	after	they	have	been	published),	we	will	import	the
given	data	into	our	own	PostgreSQL	database	entity	we	just	created.

Import	country	polygons
Open	a	new	terminal	window	and	navigate	to	the	materials	directory:

		$	cd	~/materials

List	all	directories	in	the	current	folder	with:

		$	ls	-l

You	should	be	able	to	see	the	folders		natural_earth		and		osm_mongolia	.	If	you	inspect	them	further	on,	you	will	see	that	each
folder	contains	a	wide	list	of	single	shapefiles,	but	for	the	moment	we	want	to	use	a	small	portion	of	them	to	import	into	the
database	only.	Therefore	we	are	going	to	start	with	importing	a	shapefile	involving	worldwide	country	polygons.
Navigate	to	directory		materials/natural_earth/10m_cultural		and	check	if	you	can	find	a	file	named
	ne_10m_admin_0_countries.shp	.
To	import	the	shapefile	we	will	use	the	command	line	tool		shp2pgsql	.	The	following	command	will	transform	the	input	shapefile
	ne_10m_admin_0_countries.shp		with	the	input	encoding		LATIN1		and	input	projection		4326		to	a	SQL	statement	which	will	fill
the	data	in	a	new	table		tbl_countries		in	schema		geodata	.	After	execution	the	output	of		shp2pgsql		is	directly	piped	to		psql	
which	will	run	the	SQL	output	against	the	workshop	database.	You	can	easily	copy	the	command	below	into	the	terminal	window
and	execute	it	subsequently.

		$	shp2pgsql	\

				-s	4326	\

				-W	LATIN1	\

				-I	ne_10m_admin_0_countries.shp	\

				geodata.tbl_countries	|	\

		psql	\

				-h	localhost	\

				-p	5432	\

				-U	momo	\

				-W	\

				-d	db_momo_ws

After	the	successful	execution	of	the	above	command	(re-)open		pgAdmin	III	,	mark	the	database	server		momo-workshop		in	tree
view	and	click		Refresh	the	selected	object		to	refresh	the	database/table	list	and	expand	the	tree	to		Databases		❭
	db_momo_ws		❭		Schemas		❭		geodata		❭		Tables		(if	not	already	happened)	as	shown	below:

MoMo	workshop

41Publishing

Select	table		tbl_countries		and	click		View	the	data	in	the	selected	object		to	open	the	data	view	for	the	imported	table	as
shown	below:

MoMo	workshop

42Publishing

Congratulations!	You've	successfully	imported	a	shapefile	into	PostgreSQL	that	can	now	easily	be	published	through	the
GeoServer	instance!	

MoMo	workshop

43Publishing

Store
A	store	is	the	name	for	a	container	of	geographic	data.	A	store	refers	to	a	specific	data	source,	be	it	a	shapefile,	database,	or	any	other
data	source	that	GeoServer	supports.

A	store	can	contain	many	layers,	such	as	the	case	of	a	database	that	contains	many	tables.	A	store	can	also	have	a	single	layer,	such	as	in
the	case	of	a	shapefile	or	GeoTIFF.	A	store	must	contain	at	least	one	layer.

GeoServer	saves	the	connection	parameters	to	each	store	(the	path	to	the	shapefile,	credentials	to	connect	to	the	database).	Each	store
must	also	be	associated	with	one	(and	only	one)	workspace.

A	store	is	sometimes	referred	to	as	a	"datastore"	in	the	context	of	vector	data,	or	"coveragestore"	in	the	context	of	raster	(coverage)	data.

Creating	a	new	store

Now	we	can	add	a	new	store	to	our	new	workspace		momo	.	This	store	tells	GeoServer	how	to	connect	to	the	data	source,	in	our	case	the
PostgreSQL	database.

Navigate	to		Data		❭		Stores	.
Click		Add	new	Store	.
Click		PostGIS	-	PostGIS	Database	
Set	the	Workspace	to		momo		if	it	isn't	set	already.
Configure	the	new	store	as	follows:

Data	Source	Name:	db_momo_ws
Enabled:	checked
dbtype:	postgis
host:	localhost
port:	5432
database:	db_momo_ws
schema:	geodata
user:	momo
passwd:	momo

Click		Save	

MoMo	workshop

44Publishing

Add	new	store

MoMo	workshop

45Publishing

Layer
A	layer	(sometimes	known	as	a	featuretype)	is	a	collection	of	geospatial	features	or	a	coverage.	Typically	a	layer	contains	one	type	of
data	(points,	lines,	polygons,	raster)	and	has	a	single	identifiable	subject	(streets,	houses,	country	boundaries,	etc.).	A	layer	corresponds
to	a	table	or	view	from	a	database,	or	an	individual	file.

GeoServer	stores	information	associated	with	a	layer,	such	as	projection	information,	bounding	box,	and	associated	styles.	Each	layer
must	be	associated	with	one	(and	only	one)	workspace.

Publishing	a	layer

Once	the	new	store	is	created,	GeoServer	automatically	gives	us	the	option	of	publishing	layers	from	this	store.	Here	we	chose	the	table
	tbl_countries		by	clicking		Publish	.

Publish	a	layer

Minimal	layer	configuration

After	publishing,	GeoServer	automatically	gives	us	the	option	of	configuring	the	newly	created	layer.	For	the	moment,	we	want	to	set
up	the	layer	with	some	basic	configuration	only.	Thus	we	ignore	custom	styling	or	caching	that	will	be	handled	later	on.

Configure	the	new	layer	as	follows:
Name:	countries
Enabled:	checked
Advertised:	checked
Title:	Countries
Abstract:	Countries	of	the	world.
Native	SRS:	EPSG:4326
Declared	SRS:	EPSG:4326
SRS	handling:	Keep	native

Let	GeoServer	calculate	the	bounds	of	the	data	by	clicking		Compute	from	data	.
Convert	the	native	bounds	to	the	Lat/Lon	Bounding	Box	by	clicking		Compute	from	native	bounds	.
Click		Save	.

MoMo	workshop

46Publishing

Publish	a	new	layer

MoMo	workshop

47Publishing

Previewing	a	layer
You	just	published	the	layer	with	GeoServer!	Now	let's	see	how	it	looks	by	using	the		Layer	Preview	.

Navigate	to		Data		❭		Layer	Preview	
Search	for		countries	.
Click		OpenLayers	.

Layer	Preview

Hello	world!

As	you	published	the	layer		countries		GeoServer	not	only	serves	this	layer	as	WMS,	in	addition	it	automatically	publishes	the	feature
type	via	its	WFS	server.

Return	to	the		Layer	Preview		site	and	search	for		countries		(see	steps	1.	and	2.	ahead).
Select	a	WFS	format	(e.g.	the	common	format		GeoJSON)	in	the	dropdown	menu		All	formats	.

MoMo	workshop

48Publishing

After	selecting	the	entry	you	should	see	a	new	browser	tab	or	window	containing	the	GeoJSON	representation	of	the	layer		countries	
similar	to	following	excerpt:

{

				"type":	"FeatureCollection",

				"totalFeatures":	254,

				"features":	[{

								"type":	"Feature",

								"id":	"countries.1",

								"geometry":	{

												"type":	"MultiPolygon",

												"coordinates":	[

															[

																			[

																							[-69.99693762899994,	12.577582098000022],

																							[-69.93639075399997,	12.531724351000037],

																							[-69.92467200399997,	12.519232489000018],

																								(...)

]

]

]

								},

								"geometry_name":	"geom",

								"properties":	{

												"scalerank":	3,

												"featurecla":	"Admin-0	country",

												"labelrank":	5,

												"sovereignt":	"Netherlands",

												(...)

								}

				},

				(...)

]

};

MoMo	workshop

49Publishing

Style
A	style	is	a	visualization	directive	for	rendering	geographic	data.	A	style	can	contain	rules	for	color,	shape,	and	size,	along	with	logic	for
styling	certain	features	or	points	in	certain	ways	based	on	attributes	or	scale	level.

Every	layer	must	be	associated	with	at	least	one	style.	GeoServer	recognizes	styles	in	Styled	Layer	Descriptor	(SLD)	format.	The
Styling	section	will	go	into	this	topic	in	greater	detail.

Create	and	assign	a	style	to	a	layer

Go	to		Data		❭		Styles		❭		Add	a	new	style	
Create	a	new	style	as	follows:

Name:	countries
Workspace:	momo
Format:	SLD
Copy	and	paste	the	following	SLD	content	into	the	style	field:

MoMo	workshop

50Publishing

		<?xml	version="1.0"	encoding="UTF-8"?>

		<sld:StyledLayerDescriptor

		xmlns="http://www.opengis.net/sld"

		xmlns:sld="http://www.opengis.net/sld"

		xmlns:ogc="http://www.opengis.net/ogc"

		xmlns:gml="http://www.opengis.net/gml"

		version="1.0.0">

		<sld:NamedLayer>

				<sld:Name>countries</sld:Name>

				<sld:UserStyle>

								<sld:Name>Countries</sld:Name>

								<sld:Title>Countries</sld:Title>

								<sld:FeatureTypeStyle>

												<sld:Name>countries</sld:Name>

												<sld:Rule>

																<sld:PolygonSymbolizer>

																				<sld:Fill>

																								<sld:CssParameter	name="fill">#EDEDED</sld:CssParameter>

																				</sld:Fill>

																				<sld:Stroke>

																								<sld:CssParameter	name="stroke">#969696</sld:CssParameter>

																								<sld:CssParameter	name="stroke-width">0.5</sld:CssParameter>

																				</sld:Stroke>

																</sld:PolygonSymbolizer>

																<sld:TextSymbolizer>

																				<sld:Label>

																								<ogc:PropertyName>name</ogc:PropertyName>

																				</sld:Label>

																				<sld:Font>

																								<CssParameter	name="font-family">DejaVu	Sans</CssParameter>

																								<CssParameter	name="font-size">10</CssParameter>

																				</sld:Font>

																				<sld:LabelPlacement>

																								<sld:PointPlacement>

																												<sld:AnchorPoint>

																																<sld:AnchorPointX>0.5</sld:AnchorPointX>

																																<sld:AnchorPointY>0.5</sld:AnchorPointY>

																												</sld:AnchorPoint>

																								</sld:PointPlacement>

																				</sld:LabelPlacement>

																				<sld:Halo>

																								<sld:Radius>1</sld:Radius>

																								<sld:Fill>

																												<CssParameter	name="fill">#FFFFFF</CssParameter>

																								</sld:Fill>

																				</sld:Halo>

																				<sld:Fill>

																								<CssParameter	name="fill">#707070</CssParameter>

																				</sld:Fill>

																</sld:TextSymbolizer>

												</sld:Rule>

								</sld:FeatureTypeStyle>

				</sld:UserStyle>

		</sld:NamedLayer>

		</sld:StyledLayerDescriptor>

Go	to		Data		❭		Layers	,	search	for		countries		and	select	it	in	the	list.

Go	to	tab		Publishing	.

MoMo	workshop

51Publishing

Select		momo:countries		in	dropdown	list		Default	Style	.

Click		Save	.
Open	the	layer	preview	for	the	layer		countries		and	you	will	see	that	the	layer	will	have	a	new	appearance	(light	grey	polygon
fill)	including	labels	for	each	country.

Layer	preview	centered	to	mongolia.

MoMo	workshop

52Publishing

Raster	layers
In	this	section	we	will	learn	how	to	prepare	a	large	GeoTIFF	file	with	GDAL,	set	up	a	new	raster	store	and	publish	a	new	raster	layer
with	GeoServer.

Prepare	large	GeoTIFF	with	GDAL
Create	a	new	ImagePyramid	datastore
Publish	a	new	raster	layer
Preview	the	layer	using	GeoServer's	layer	preview

MoMo	workshop

53Publishing

Preparing	the	data
An	image	pyramid	builds	multiple	mosaics	of	images,	each	one	at	a	different	zoom	level,	making	it	so	that	each	tile	is	stored	in	a
separate	file.	This	comes	with	a	composition	overhead	to	bring	back	the	tiles	into	a	single	image,	but	can	speed	up	image	handling	as
each	overview	is	tiled,	and	thus	a	sub-set	of	it	can	be	accessed	efficiently	(as	opposed	to	a	single	GeoTIFF,	where	the	base	level	can	be
tiled,	but	the	overviews	never	are).

Out	input	raster	from	natural	earth	is	a	simple	huge	GeoTIFF	file	(~400MB)	without	overviews.	Not	exactly	what	we'd	want	to	use	for
high	performance	data	serving,	but	good	for	redistribution	and	as	a	starting	point	to	build	a	pyramid.

In	order	to	build	the	pyramid	we'll	use	the		gdal_retile.py		utility,	part	of	the	GDAL	command	line	utilities	and	available	for	various
operating	systems.

Open	terminal	and	navigate	to	directory		~/materials/natural_earth/OB_LR	.
Create	a	new	folder	named		pyramid		with:

$		mkdir	OB_LR_pyramid/

Run	the	following	command	that	will	build	a	pyramid	(Note:	This	may	take	a	while!):

$	gdal_retile.py	-v	\

				-s_srs	EPSG:4326	\

				-r	bilinear	\

				-levels	4	\

				-ps	512	512	\

				-co	"TILED=YES"	\

				-co	"COMPRESS=JPEG"	\

				-targetDir	OB_LR_pyramid/	\

				OB_LR.tif

Short	explanation:

-v:	Verbose	output,	allows	the	user	to	see	each	file	creation	scroll	by,	thus	knowing	progress	is	being	made.
-r	bilinear:	Use	bilinear	interpolation	when	building	the	lower	resolution	levels.	This	is	key	to	get	good	image	quality	without
asking	GeoServer	to	perform	expensive	interpolations	in	memory.
-levels	4:	The	number	of	levels	in	the	pyramid.
-ps	512	512:	Each	tile	in	the	pyramid	will	be	a	512x512	GeoTIFF.
-co	"TILED=YES":	Each	GeoTIFF	tile	in	the	pyramid	will	be	inner	tiled.
-co	"COMPRESS=JPEG":	Each	GeoTIFF	tile	in	the	pyramid	will	be	JPEG	compressed	(trades	small	size	for	higher
performance,	try	out	it	without	this	parameter	too).
-targetDir	pyramid:	Build	the	pyramid	in	the	pyramid	directory.	The	target	directory	must	exist	and	be	empty
OB_LR.tif:	The	source	file
As	GeoServer	needs	to	have	read	and	write	access	to	the	pyramid	we	just	created,	we'll	move	the		OB_LR_pyramid		folder	to	the
GeoServer		data		directory:

$	sudo	mv	OB_LR_pyramid/	/opt/tomcat/webapps/geoserver/data/data/

Navigate	to	the	data	directory:

$	cd	/opt/tomcat/webapps/geoserver/data/data/

Assign	read	and	write	access	to	the		tomcat		user:

$	sudo	chown	-R	tomcat:tomcat	OB_LR_pyramid;	sudo	chmod	-R	755	OB_LR_pyramid/

MoMo	workshop

54Publishing

MoMo	workshop

55Publishing

Creating	a	new	store
Go	to		Data		❭		Stores		❭		Add	a	new	Store	
Select		ImagePyramid	

Create	the	new	store	as	follows:
Workspace:	momo
Data	Source	name:	ocean-bottom-relief
Enabled:	checked
URL:		file:data/OB_LR_pyramid	

Click		Save	.

MoMo	workshop

56Publishing

Publishing	a	layer
Once	the	new	store	is	created,	GeoServer	automatically	gives	us	the	option	of	publishing	layers	from	this	store.	Here	we	chose	the	entry
	OB_LR_pyramid		by	clicking		Publish	.

Configure	ImagePyramid	store

Minimal	layer	configuration
After	publishing,	GeoServer	automatically	gives	us	the	option	of	configuring	the	newly	created	layer.	For	the	moment,	we	want	to	set
up	the	layer	with	some	basic	configuration	only.	Thus	we	ignore	custom	styling	or	caching	that	will	be	handled	later	on.

Configure	the	new	layer	as	follows:
Name:	ocean-bottom-relief
Enabled:	checked
Advertised:	checked
Title:	Ocean	bottom	relief
Abstract:	Blended	depth	colors	and	relief	shading	of	the	ocean	bottom	derived	from	CleanTOPO2	data.
Native	SRS:	EPSG:4326
Declared	SRS:	EPSG:4326
SRS	handling:	Keep	native

Let	GeoServer	calculate	the	bounds	of	the	data	by	clicking		Compute	from	data	.
Convert	the	native	bounds	to	the	Lat/Lon	Bounding	Box	by	clicking		Compute	from	native	bounds	.

MoMo	workshop

57Publishing

Click		Save	.

MoMo	workshop

58Publishing

Previewing	a	layer
You	just	published	the	raster	layer	with	GeoServer!	Now	let's	see	how	it	looks	by	using	the		Layer	Preview	.

1.	 Navigate	to		Data		❭		Layer	Preview	
2.	 Search	for		ocean	.
3.	 Click		OpenLayers	.

The	bathymetry	layer.

MoMo	workshop

59Publishing

Group	layers
In	this	section	we	will	learn	how	to	set	up	a	new	grouped	layer	with	GeoServer.

Publish	a	new	grouped	layer
Preview	the	layer	using	GeoServer's	layer	preview

MoMo	workshop

60Publishing

Layer	group
A	layer	group,	as	its	name	suggests,	is	a	collection	of	layers.	A	layer	group	makes	it	possible	to	request	multiple	layers	with	a	single
WMS	request.	A	layer	group	contains	information	about	the	layers	that	comprise	the	layer	group,	the	order	in	which	they	are	rendered,
the	projection,	associated	styles,	and	more.	This	information	can	be	different	from	the	defaults	for	each	individual	layer.

Layer	groups	do	not	respect	the	concept	of	workspace,	and	are	relevant	only	to	WMS	requests.

Create	grouped	layer
Use	countries	and	ocean	bottom	relief

Go	to		Data		❭		Layer	Groups		❭		Add	new	layer	group	.
Create	a	new	layer	group	as	follows:

Name:	world-layer
Title:	World	layer
Workspace:	momo

Find	and	select		EPSG:4326		under		Coordinate	Reference	System	.

Click		Layers		❭		Add	Layer	,	search	for		ocean-bottom		and	click	the		ocean-bottom-relief		in	the	list	to	add	the	layer	to	the
group.

MoMo	workshop

61Publishing

Repeat	the	step	above	for	layer		countries	.
Let	GeoServer	generate	the	bounds	for	this	layer	by	pressing		Generate	bounds	.

MoMo	workshop

62Publishing

Click		Save	.

MoMo	workshop

63Publishing

Previewing	a	layer
You	just	published	the	group	layer	with	GeoServer!	Now	let's	see	how	it	looks	by	using	the		Layer	Preview	.

Navigate	to		Data		❭		Layer	Preview	
Search	for		world-layer	.
Click		OpenLayers	.

The	group	layer	centered	to	the	Philippines

MoMo	workshop

64Publishing

GeoServer	Advanced
In	this	section	we'll	learn	two	aspects	of	advanced	usage	of	GeoServer,	where	we'll	focus	on	the	confiuguration	via	the	REST	interface
and	the	caching	of	layers	with	the	built-in	caching	engine	GeoWebCache.

REST	API
Caching	with	GeoWebCache

MoMo	workshop

65Advanced

Excursion:	REST	interface
This	chapter	will	give	you	a	short	introduction	to	GeoServers	REST	(Representational	State	Transfer)	interface.	The	REST	API	allows
you	to	read,	write,	update	and	remove	(almost)	all	GeoServer	catalog	elements	directly	via	the	HTTP	protocol.	These	can	include,	for
example,	the	manipulation	of	workspaces,	data	storages,	layer	styles	and	layers	itself.	A	benefit	of	using	the	REST	interface	is	that	you
can	script	recurring	steps	of	work,	for	instance	publishing	a	large	number	of	layers	at	once	from	a	remote	machine.

Principle	of	operation,	source:
https://github.com/boundlessgeo/workshops/blob/master/workshops/geoserver/adv/doc/source/catalog/img/rest_theory.png

What	is	REST?

REST	(sometimes	as	ReST)	is	an	acronym	for	Representational	State	Transfer	and	is	an	architectural	style	for	the	realization	of	web
services	and	is	therefore	frequently	mentioned	in	connection	with	RESTful	Webservices.	The	idea	behind	is	that	one	should	be	able	to
use	simple	and	lightweight	HTTP	calls	to	connect	between	(web-)clients	and	remote	servers.	So	the	capabilities	of	the	REST	API
consists	of	the	actions	(verbs)	we	can	use	to	make	HTTP	requests	combined	with	the	configurable	resources	in	GeoServer.	For	each	of
the	resources	in	GeoServer	(workspaces,	stores,	layers,	styles,	layer	groups,	etc.)	we	can	perform	the	following	operations	(source):

MoMo	workshop

66REST

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

Operation Description

GET The	GET	method	requests	a	representation	of	the	specified	resource.	Requests	using	GET	should	only	retrieve
data	and	should	have	no	other	effect.

POST The	POST	method	requests	that	the	server	accept	the	entity	enclosed	in	the	request	as	a	new	subordinate	of	the
web	resource	identified	by	the	URI.

PUT
The	PUT	method	requests	that	the	enclosed	entity	be	stored	under	the	supplied	URI.	If	the	URI	refers	to	an
already	existing	resource,	it	is	modified;	if	the	URI	does	not	point	to	an	existing	resource,	then	the	server	can
create	the	resource	with	that	URI.

PATCH The	PATCH	method	applies	partial	modifications	to	a	resource.

DELETE The	DELETE	method	deletes	the	specified	resource.

HEAD The	HEAD	method	asks	for	a	response	identical	to	that	of	a	GET	request,	but	without	the	response	body.	This	is
useful	for	retrieving	meta-information	written	in	response	headers,	without	having	to	transport	the	entire	content.

OPTIONS The	OPTIONS	method	returns	the	HTTP	methods	that	the	server	supports	for	the	specified	URL.

CONNECT The	CONNECT	method	converts	the	request	connection	to	a	transparent	TCP/IP	tunnel,	usually	to	facilitate
SSL-encrypted	communication	(HTTPS)	through	an	unencrypted	HTTP	proxy.

TRACE The	TRACE	method	echoes	the	received	request	so	that	a	client	can	see	what	(if	any)	changes	or	additions	have
been	made	by	intermediate	servers.

To	sum	it	up,	in	the	GeoServer	REST	API	we	are	able	to	use	the	methods	as	follows:

GET	to	read	an	existing	resource
POST	to	add	a	new	resource
PUT	to	update	an	existing	resource
DELETE	to	remove	a	resource

In	relation	to	the	methods	mentioned	above	each	request	will	respond	with	a	certain	response	code:

Status
code Status	text Description

200 OK Request	was	successful

201 Created A	resource	(e.g.	a	layer)	was	successfully	created

403 Forbidden Not	authorized

404 Not	Found Resource	or	endpoint	not	found

405 Method	Not
Allowed

Wrong	operation	for	resource	or	endpoint	(e.g.	GET-request,	but	only	PUT/POST
allowed)

500 Internal	Server
Error Error	while	execution	(e.g.	syntax	error	in	request)

MoMo	workshop

67REST

Reading	the	catalog
In	this	module	we	will	learn	how	to	read	out	the	GeoServer	configuration	via	the	REST	API.

As	already	mentioned	in	the	previous	chapter,	a	key	condition	of	REST	is	the	addressability.	Thereby	each	catalog	configuration	(=
resource	or	endpoint)	in	GeoServer	has	an	unique	URL.

At	first	we	will	investigate	the	REST	API	via	the	browser.	At	the	same	time	we	are	using	the	HTTP	operation		GET		to	retrieve
information	from	the	server.

Open	up	a	browser	window	and	navigate	to	the	following	URL	(Note:	You	will	be	prompted	for	your	GeoServer	user	and
password):

		http://localhost/geoserver/rest

You	will	see	a	simple	HTML	list	which	contains	the	top	endpoints	provided	by	the	REST	API.	The	list	view	is	fully	controllable	and
clearly	assigned.	A	selection	in	the	browser	(for	example	the	entry	workspaces)	navigates	the	browser	to	unique	URL
	http://localhost/geoserver/rest/workspaces	.	The	structure	of	the	list	(when	selecting	a	workspace)	follows	the	logical	structure	of
the	GeoServer	catalog	we	already	met	in	the	previous	sections:

workspace

		|

		+--datastore

							|

							+--featuretype

The	above	actions	in	the	browser	will	call	an	endpoint	in	HTML	format	by	default.	The	GeoServer	also	supports	the	formats		JSON	
(JavaScript	Object	Notation)	and		XML		(Extensible	Markup	Language),	which	are	particularly	relevant	in	the	manipulation	of	a	resource
we	will	use	later	on.

Switch	to	a	new	tab	in	your	browser.	Then	open	and	compare	the	following	outputs:

		http://localhost/geoserver/rest/workspaces

		http://localhost/geoserver/rest/workspaces.json

		http://localhost/geoserver/rest/workspaces.xml

MoMo	workshop

68REST

In	the	next	step	we	want	to	get	a	full	description	of	the	feature	type		countries		we	created	in	the	previous	module	in	format
	JSON	.	Copy	the	following	request	in	your	browser	and	explore	the	output:

		http://localhost/geoserver/rest/workspaces/momo/datastores/db_momo_ws/featuretypes/countries.json

MoMo	workshop

69REST

Creating	a	new	resource
In	this	exercise	we	are	going	to	use	the	REST	interface	in	combination	with	the	HTTP	operations		POST		and		PUT		to	create	a	resource
on	the	server.	In	contrast	to	the	previous	module	here	we	are	going	to	use	the	command	line	tool	cURL	to	access	the	catalog.	cURL	is	a
command	line	tool	to	transfer	data	from	or	to	a	server	using	one	of	the	supported	protocols	(e.g.	HTTP	or	FTP).	For	more	about	the	tool
have	a	look	at	here.

Creating	a	new	workspace

In	this	module	we	are	going	to	repeat	the	steps	we	have	done	in	chapter	Publishing	a	vector	layer.	But	as	we	don't	want	to	override	our
progress	(or	any	individual	changes)	made	to	the	workspace		momo	,	we	will	create	new	workspace		momo-rest		for	the	ensuing
exercises.

Open	up	the	terminal	(if	not	already	openend)	and	type	in	the	following	command	to	create	a	new	workspace	named		momo-rest	:

		$	curl	\

				-v	\

				-u	admin:momo-ws\

				-XPOST	\

				-H	"Content-type:	text/xml"	\

				-d	"<workspace>

										<name>momo-rest</name>

								</workspace>"	\

				http://localhost/geoserver/rest/workspaces

The	call	above	differs	in	two	essential	points	from	the	previous	read	operations:	Unlike	the	HTTP	operation		GET		we	use	the
operation		POST		and	in	addition	we	transfer	a		XML		content	containing	a	simple	workspace	definition	to	the	unique	endpoint
	workspaces	.
Hit		Enter		to	execute	the	above	command	and	you	will	see	an	output	like	this:

		*	Hostname	was	NOT	found	in	DNS	cache

		*			Trying	127.0.0.1...

		*	Connected	to	localhost	(127.0.0.1)	port	80	(#0)

		*	Server	auth	using	Basic	with	user	'admin'

		>	POST	/geoserver/rest/workspaces	HTTP/1.1

		>	Authorization:	Basic	YWRtaW46Z2Vvc2VydmVy

		>	User-Agent:	curl/7.35.0

		>	Host:	localhost:80

		>	Accept:	*/*

		>	Content-type:	text/xml

		>	Content-Length:	57

		>

		*	upload	completely	sent	off:	57	out	of	57	bytes

		<	HTTP/1.1	201	Created

		<	Date:	Wed,	03	Feb	2016	10:30:39	GMT

		<	Location:	http://localhost:80/geoserver/rest/workspaces/momo-rest

		*	Server	Noelios-Restlet-Engine/1.0..8	is	not	blacklisted

		<	Server:	Noelios-Restlet-Engine/1.0..8

		<	Transfer-Encoding:	chunked

		<

		*	Connection	#0	to	host	localhost	left	intact

Here,	two	informations	are	crucial	to	us:
	HTTP/1.1	201	Created	:	The	request	has	been	successfully	processed	and	the	resource	has	been	created.
	http://localhost/geoserver/rest/workspaces/momo-rest	:	The	REST	endpoint	URL	of	our	new	workspace.

We	can	verify	that	the	workspace	was	actually	created	either	by	using	the	GeoServer	UI	or	the	REST	interface:
Open	the	GeoServer	user	interface,	navigate	to	the	page		Data		❭		Workspaces		and	ensure	a	new	workspace	named		momo-
rest		is	available	in	the	list.
Open	the	terminal	and	run	the	following	command	to	get	a		XML		representation	of	all	available	workspaces:

MoMo	workshop

70REST

https://curl.haxx.se/
http://localhost/geoserver

		$	curl	\

				-v	\

				-u	admin:momo-ws	\

				-XGET	\

				-H	"Accept:	text/xml"	\

				http://localhost/geoserver/rest/workspaces

Creating	a	new	store
Now	that	we	have	created	a	new	workspace,	we'll	add	a	new	data	store	to	it.	Here	we	are	reusing	the	database	we	already	created	(and
added	to	the	geoserver).

Open	the	terminal	and	insert	the	following	command	to	create	a	new	PostGIS	datastore	named		db_momo_ws_rest	:

		$	curl	\

				-v	\

				-u	admin:momo-ws	\

				-XPOST	\

				-H	"Content-type:	text/xml"	\

				-d	"<dataStore>

										<name>db_momo_ws_rest</name>

										<connectionParameters>

												<host>localhost</host>

												<port>5432</port>

												<database>db_momo_ws</database>

												<schema>geodata</schema>

												<user>momo</user>

												<passwd>momo</passwd>

												<dbtype>postgis</dbtype>

										</connectionParameters>

								</dataStore>"	\

				http://localhost/geoserver/rest/workspaces/momo-rest/datastores

Hit		Enter		to	execute	the	command.	This	will	result	in	the	following	output,	assuring	that	the	store	was	successfully	created:

		*	Hostname	was	NOT	found	in	DNS	cache

		*			Trying	127.0.0.1...

		*	Connected	to	localhost	(127.0.0.1)	port	80	(#0)

		*	Server	auth	using	Basic	with	user	'admin'

		>	POST	/geoserver/rest/workspaces/momo-rest/datastores	HTTP/1.1

		>	Authorization:	Basic	YWRtaW46Z2Vvc2VydmVy

		>	User-Agent:	curl/7.35.0

		>	Host:	localhost:80

		>	Accept:	*/*

		>	Content-type:	text/xml

		>	Content-Length:	347

		>

		*	upload	completely	sent	off:	347	out	of	347	bytes

		<	HTTP/1.1	201	Created

		<	Date:	Wed,	03	Feb	2016	10:59:04	GMT

		<	Location:	http://localhost:80/geoserver/rest/workspaces/momo-rest/datastores/db_momo_ws_rest

		*	Server	Noelios-Restlet-Engine/1.0..8	is	not	blacklisted

		<	Server:	Noelios-Restlet-Engine/1.0..8

		<	Transfer-Encoding:	chunked

		<

		*	Connection	#0	to	host	localhost	left	intact

Once	again	we	can	verify	the	successful	creation	in	the	GeoServer	UI	(Data		❭		Stores).

Publishing	a	layer
In	the	next	step	we're	going	to	publish	the	table		tbl_countries		as	a	new	layer.

Open	the	terminal	and	insert	the	following	command	to	create	a	new	feature	type	(and	layer)	named		countries_rest	:

MoMo	workshop

71REST

		$	curl	\

				-v	\

				-u	admin:momo-ws	\

				-XPOST	\

				-H	"Content-type:	text/xml"	\

				-d	"<featureType>

										<name>countries_rest</name>

										<nativeName>tbl_countries</nativeName>

										<title>Countries</title>

										<nativeCRS>EPSG:4326</nativeCRS>

										<enabled>true</enabled>

								</featureType>"	\

		http://localhost/geoserver/rest/workspaces/momo-rest/datastores/db_momo_ws_rest/featuretypes

And	again,	verify	that	the	response	contains	the	lines

		HTTP/1.1	201	Created

and

		Location:	http://localhost/geoserver/rest/workspaces/momo-rest/datastores/db_momo_ws_rest/featuretypes/countries_rest

Additionally	we	can	also	have	a	look	at	the	preview	page	to	ensure	the	layer	is	correctly	published.

Create	and	upload	style
We	can	use	the	REST	API	both	to	create	a	new	style	object	in	GeoServer	and	to	insert	an	existing	SLD-file	into	it.	At	first	we	need	to
create	a	new	SLD	file	on	our	local	machine	we'll	need	in	the	next	step.	For	this	purpose	we	can	use	the	style	already	used	in	the
previous	module.

Open	the	terminal	and	navigate	to	your	home	directory	with:

		$	cd	~

Create	and	open	a	new	SLD	file		countries-style.sld		in	this	directory	with:

		$	nano	countries-style.sld

Copy	the	linked	SLD	content	(see	here)	the	newly	created	file	and	save	it	with		Ctrl	+	O	.	You	can	now	close	the	nano	editor	with
	Ctrl	+	X	.

We	will	now	create	the	style	and	upload	the	SLD	file	we	just	created.

Copy	the	following	block	into	your	terminal	and	execute	it	to	create	a	new	style	object:

		$	curl	\

				-v	\

				-u	admin:momo-ws	\

				-XPOST	\

				-H	"Content-type:	text/xml"	\

				-d	"<style>

										<name>countries_rest</name>

										<filename>countries-style.sld</filename>

								</style>"	\

				http://localhost/geoserver/rest/workspaces/momo-rest/styles

And	again,	verify	that	the	response	contains	the	lines

		HTTP/1.1	201	Created

MoMo	workshop

72REST

http://localhost/geoserver/momo-rest/wms?service=WMS&version=1.1.0&request=GetMap&layers=momo-rest:countries_rest&styles=&bbox=-181.800003051758,-90.8681716918945,181.800018310547,84.5022735595703&width=768&height=370&srs=EPSG:4326&format=application/openlayers

and

		Location:	http://localhost:80/geoserver/rest/workspaces/momo-rest/styles/countries_rest

Afterwards	we	can	upload	the	style	created	above	with	(Note:	Ensure	the	path	to	file		countries-style.sld		is	correct!):

		$	curl	\

				-v	\

				-u	admin:momo-ws	\

				-XPUT	\

				-H	"Content-type:	application/vnd.ogc.sld+xml"	\

				-d	@countries-style.sld	\

				http://localhost/geoserverrest/workspaces/momo-rest/styles/countries_rest

This	command	should	complete	with:

		HTTP/1.1	200	OK

Assign	a	layer	style

After	we	have	created	the	style,	we	can	assign	this	style	to	the	layer		countries_rest	.

Copy	and	execute	the	following	command	in	the	terminal	window:

		$	curl	\

				-v	\

				-u	admin:momo-ws	\

				-XPUT	\

				-H	"Content-type:	text/xml"	\

				-d	"<layer>

										<defaultStyle>

												<name>countries_rest</name>

												<workspace>momo-rest</workspace>

										</defaultStyle>

								</layer>"	\

				http://localhost/geoserver/rest/layers/momo-rest:countries_rest

After	finished	with		HTTP/1.1	200	OK		we	can	open	the	preview	page	to	review	the	changes	made	to	the	layer	style.

MoMo	workshop

73REST

http://localhost/geoserver/momo-rest/wms?service=WMS&version=1.1.0&request=GetMap&layers=momo-rest:countries_rest&styles=&bbox=-181.800003051758,-90.8681716918945,181.800018310547,84.5022735595703&width=768&height=370&srs=EPSG:4326&format=application/openlayers

Layer	created	and	styled	via	the	REST	API.

MoMo	workshop

74REST

Updating	a	layer
Basically	we	can	change	every	element	of	catalog	by	the	use	of	the	REST	API.	In	the	following	example	we	will	change	the
	countries_rest		layer's	default	output	projection	to		EPSG:54009		(Mollweide	projection).

Execute	the	following	terminal	command	to	update	the	layer		countries_rest	.	(Note:	Every	update	needs	the	property
	<enabled>true</enabled>	

otherwise	the	catalog	entry,	in	this	case	the	layer,	will	be	disabled	and	not	be	visible	to	any	user!)

		$	curl	\

				-v	\

				-u	admin:momo-ws	\

				-XPUT	\

				-H	"Content-type:	text/xml"	\

				-d	"<featureType>

										<enabled>true</enabled>

										<srs>EPSG:54009</srs>

										<projectionPolicy>REPROJECT_TO_DECLARED</projectionPolicy>

								</featureType>"	\

				http://localhost/geoserver/rest/workspaces/momo-rest/datastores/db_momo_ws_rest/featuretypes/countries_rest

After	this	step	has	been	confirmed	as	successfully	finished	with		HTTP	/	1.1	200	OK	,	we	can	then	automatically	calculate	the	new
native	and	lat/lon	bounding	box	of	the	layer	by	appending	the	parameter		recalculate=nativebbox,latlonbbox		to	the	REST	URL:

		$	curl	\

				-v	\

				-u	admin:momo-ws	\

				-XPUT	\

				-H	"Content-type:	text/xml"	\

				-d	"<featureType>

										<enabled>true</enabled>

								</featureType>"	\

				http://localhost/geoserver/rest/workspaces/momo-rest/datastores/db_momo_ws_rest/featuretypes/countries_rest?recalculate=nativebbox,latlonbbox

Review	that	the	layer	has	been	updated	correctly	by	opening	the	layer	configuration	in	the	GeoServer	UI	(Data		❭		Layers)	and
have	a	look	at	the	subsection		Coordinate	Reference	System		and		Bounding	Boxes	,	which	should	contain	your	requested
changes.

Finally	have	a	look	at	the	layer	preview	page	and	note,	that	the	default	SRS	is	set	to	EPSG:54009.

MoMo	workshop

75REST

https://en.wikipedia.org/wiki/Mollweide_projection

Layer	in	EPSG:54009.

MoMo	workshop

76REST

Remove	a	resource
You	should	have	noticed	that	the	layer		countries		is	available	twice	now.	The	first	one	was	created	"manually"	by	the	use	of	the
GeoServer	UI,	the	second	one	via	the	REST	API.	Because	we	don't	want	to	unnecessarily	publish	a	layer	twice	(and	of	course	to	learn
how	to	delete	a	resource	by	means	of	REST),	we	will	delete	the		countries_rest		layer	by	using	the	HTTP	operation		DELETE	.

Execute	the	following	command	to	delete	the	feature	type		countries_rest		and	the	corresponding	layer	by	appending
	recurse=true		to	the	request:

		$	curl	\

				-v	\

				-u	admin:momo-ws	\

				-XDELETE	\

				http://localhost/geoserver/rest/workspaces/momo-rest/datastores/db_momo_ws_rest/featuretypes/countries_rest?recurse=

After	the	above	command	has	successfully	executed	with		HTTP/1.1	200	OK		try	to	find	the	layer	in	the	GeoServer	Layer
configuration	page	and	if	anything	worked	fine,	you	shouldn't	be	able	to	find	it	

MoMo	workshop

77REST

GeoWebCache
The	most	common	request	to	GeoServer	is	to	provide	an	OGC-compliant	WMS	interface	and	thus	generating	maps	in	raster	format.	For
this	reason,	caching	of	these	WMS	requests	may	have	a	decisive	influence	to	the	performance	of	the	server	and	should	be	carried	out	on
each	(productive)	system	wherever	possible.	For	caching	map	tiles	there	is	a	variety	of	good	open	source	caching	engines	available,	but
here	we'll	use	the	GeoServer	integrated	GeoWebCache	(GWC),	which	acts	as	a	proxy	between	the	client	and	GeoServer.

GeoWebCache	as	proxy,	source:	http://geowebcache.org/docs/current/_images/how_it_works.png

In	the	following	sections	we'll	initiate	all	required	steps	to	generate	a	cache	for	the	layer		momo:countries	:

Prerequisites
Configure	a	new	gridset
Configure	a	cached	layer
Generate	map	tiles.
Check	cache	directory
Check	cache-headers

MoMo	workshop

78GeoWebCache

Prerequisites
Before	we	can	start	caching	a	set	of	layers	we	need	to	configure	a	directory	where	GWC	should	save	all	cached	tiles.	To	accomplish
this,	please	follow	these	steps:

Open	the	terminal	and	create	the	cache	directory	(Note:	You'll	be	prompted	for	the	admin	password):

		$	sudo	mkdir	/opt/tomcat/webapps/geoserver/data/gwc

Ensure	GeoServer	has	read	and	write	access	to	this	directory	by	changig	the	ownership	to	user	and	group		tomcat	:

		$	sudo	chown	tomcat:tomcat	/opt/tomcat/webapps/geoserver/data/gwc

Open	the	terminal	and	copy	the	following	command	to	open	the	file		web.xml		in	the	text	editor		gedit	:

		$	sudo	gedit	/opt/tomcat/webapps/geoserver/WEB-INF/web.xml

The	following	block	will	advise	GWC	to	store	all	cached	tiles	into	the	directory		/opt/tomcat/webapps/geoserver/data/gwc	.
Insert	it	at	line	~64	in	the	already	opened	file.

		<!--	The	GWC	data	directory-->

		<context-param>

				<param-name>GEOWEBCACHE_CACHE_DIR</param-name>

				<param-value>/opt/tomcat/webapps/geoserver/data/gwc</param-value>

		</context-param>

Save	the	changes	and	close	the	text	editor.
To	apply	the	changes,	we	need	to	restart	GeoServer.	Go	to	your	terminal	and	run	the	following	command:

		$	sudo	restart	tomcat

Open	the	newly	created	directory	in	the	terminal	to	check	there	is	a	file	named		geowebache.xml		only:

		$	cd	/opt/tomcat/webapps/geoserver/data/gwc

MoMo	workshop

79GeoWebCache

Tiles	and	gridsets

Tiles

GeoWebCache	caches	images	retrieved	from	a	WMS.	The	smallest	unit	of	image	cached	is	known	as	a	tile.	All	tiles	are	assumed	to	be
the	same	dimensions	and	are	typically	square	(i.e.	256	pixels	by	256	pixels).	The	tiles	are	stored	in	a	rectangular	grid,	indexed	by	(x,y)
coordinates.	A	z	coordinate	(zero-indexed)	is	used	to	denote	the	zoom	level,	resulting	in	each	tile	being	indexed	as	a	triplet	(x,y,z).

Gridsets

Gridsets	and	gridsubsets	refer	to	the	spatial	reference	system	of	the	layers	served	by	GeoWebCache.	When	GeoWebCache	makes	a
request	to	a	WMS,	it	uses	the	gridset	and	gridsubset	information	to	convert	its	internal	tile	index	to	a	spatial	request	that	the	WMS	will
understand.

Composition	of	a	gridset,	source:	http://3.bp.blogspot.com/_0_xIiXP5xuY/S5pEpCjenaI/AAAAAAAAAKY/PDKTGZ6vzGI/s1600-
h/Image_Pyramid.gif

A	gridset	is	a	global	definition	(i.e.	not	layer-specific)	specifying:

A	spatial	reference	system.
A	bounding	box	describing	the	extent,	typically	the	maximum	extent	for	the	above	reference	system.
One	of	either	a	list	of	scale	denominators,	resolutions,	or	zoom	levels.
The	tile	dimensions	in	pixels	(constant	for	all	zoom	levels).

A	gridsubset	is	a	layer-specific	definition	specifying:

The	gridset	for	the	layer.
(Optional)	The	bounding	box	for	that	layer	(which	must	be	a	subset	of	the	extent	of	the	gridSet).
(Optional)	A	list	of	zoom	levels	(which	must	be	a	subset	of	what	is	defined	in	the	gridSet).

For	further	instructions	have	a	look	at	the	source	of	the	above	explanations,	here.

Configure	a	new	gridset

MoMo	workshop

80GeoWebCache

http://geowebcache.org/docs/1.6.0/concepts/index.html

So,	our	first	step	will	be	to	create	a	new	gridset:

Go	to		Tile	Caching		❭		Gridsets	

Click		Create	a	new	gridset		to	create	a	new	gridset	and	use	the	following	options	for	the	creation:
Name:	momo-4326
Coordinate	Reference	System:	Use	the	find-button	to	select		EPSG:4326	
Gridset	bounds:	Click		Compute	from	maximum	extent	of	CRS	
Tile	width	in	pixels:	512
Tile	height	in	pixels:	512
Define	grids	based	on:	Select		Scale	denominators	

Click		Add	zoom	level		to	create	a	new	zoom	level.	Enter	the	scale		300.000.000		and	the	name		0	.
Once	again	click		Add	zoom	level	.	You	will	see	that	the	scale	value	is	automatically	cut	into	halves	(150.000.000).	Just	enter
the	name		1		and	repeat	this	step	until	you	reached	a	total	count	of	8	zoom	levels.	The	last	scale	value	should	be		2.343.750	.

MoMo	workshop

81GeoWebCache

Click		Save	.

MoMo	workshop

82GeoWebCache

Cached	layer
In	the	next	step	we'll	configure	the	layer		countries		to	apply	to	all	needed	cache-properties.

Go	to		Data		❭		Layers		and	select	the		countries		layer.
Open	the	panel		Tile	Caching	.

Here	we	can	configure	all	GWC-dependend	properties	in	a	per-layer-basis.	The	most	important	configuration	parameters	are:

Create	a	cached	layer	for	this	layer:	Should	this	layer	be	cached?
Metatiling	factors:	Metatiles	are	larger	map	tiles	from	which	the	cached	tiles	will	be	cut.	The	factor	in	this	case	indicates	the	size
of	the	metatiles.	A	factor	of	3x3	means	that	the	screen	width	of	the	target	tile	is	increased	by	a	factor	of	three	that	results	(by	a
requested	tile	size	of	256px)	in	an	metatile	tile	size	of	768px.	Primarily	metatiles	are	needed	to	prevent	duplicate	map	labels	(for
example	for	road	layers)	in	two	adjacent	tiles.
Gutter	size	in	pixels:	Additional	frame	(in	px)	to	be	requested	by	a	tile.	Only	useful	when	there	are	layout	problems	in	the
preparation	of	labels	and/or	features	on	the	tile	edge	in	conjunction	with	the	use	of	metatiles.
Tile	Image	Formats:	The	standard	image	format	for	the	tiles.
STYLES:	Is	there	any	other	style	existing	for	the	given	layer	that	should	be	cached,	it	must	be	selected	here.	In	most	cases	it	will	be
sufficient	to	set	the	default	layer	styles	(LAYER	DEFAULT)	only.
Gridset:	The	gridset	defines	the	grid	the	stored	tiles	are	indexed	and	thus	defines	the	spatial	index	of	the	individual	tiles.	The	single
tile	in	the	rectangular	grid	is	identified	by	means	of	a	x,	y,	z	coordinate	triple.	The	x	and	y	coordinates	determine	the	horizontal
and	vertical	position,	the	z	coordinate	the	zoom	level.	See	previous	chapter	as	well.

Configure	a	cached	layer

With	this	in	mind,	we	can	configure	the	layer		countries		as	follows:

Select	the	following	values:
Create	a	cached	layer	for	this	layer:	checked
Enable	tile	caching	for	this	layer:	checked
Metatiling	factors:	4	x	4
Gutter	size	in	pixels:	0
Tile	Image	Formats:	Check		image/png		only
Expire	server	cache	after	n	seconds:	0
Expire	client	cache	after	n	seconds:	0
Styles:	Select		LAYER	DEFAULT	
Gridset:	Select		momo-4326		in	the		Add	grid	subset		combobox	and	click	the	green	plus	icon.	Remove	any	other
preconfigured	gridset	by	clicking	the	red	minus	icon.

MoMo	workshop

83GeoWebCache

Click		Save	.

MoMo	workshop

84GeoWebCache

Generate	map	tiles
Generally	speaking,	GWC	applies	two	methods	for	creating	cached	map	tiles:

1.	 On-the-fly	processing:	If	a	GWC	layer	is	primarily	requested	by	a	client,	the	appropriate	map	tiles	are	rendered	and	subsequently
stored	in	the	GWC	data	directory.	The	next	client,	requesting	the	same	layer	on	the	same	location	receives	a	(much	faster)	response
from	the	cache.

2.	 Preprocessing	of	map	tiles:	The	tiles	of	a	layer	will	be	preprocessed	and	stored	in	a	defined	bounding	box	and	in	defined	zoom
levels	along	the	given	gridset.	In	contrast	to	the	on-the-fly	calculation,	this	method	requires,	depending	on	the	available	system
resources,	significantly	more	computing	time,	but	all	clients	will	receive	a	direct	response	from	the	cache.

With	the	following	steps	we'll	preprocess	the	tiles	and	start	the	so	called		Seeding		job.

Go	to		Tile	Caching		❭		Tile	Layers	.
Find	the	layer		momo:countries		and	select		Seed/Truncate	.

In	the	upcoming	mask	we	can	configure	a	GWC-task	for	seeding	the	layers		countries	.	Here	we	can	use	the	following
configuration:

Number	of	tasks	to	use:	04
Type	of	operation:	Reseed	-	regenerate	all	tiles	(The	option		Seed	-	generate	missing	tiles		would	behave	the	same	here	as
we	haven't	any	cache	present)
Grid	Set:	momo-4326
Format:	image/png
Zoom	start:	00
Zoom	stop:	07

MoMo	workshop

85GeoWebCache

Click		Submit	.
In	the	same	window	the	section		List	of	currently	executing	tasks		will	be	filled	with	the	recent	tasks	and	involves	some	basic
informations	about	it.

Depending	on	your	system	resources	the	seeding	tasks	should	not	cover	more	than	a	few	minutes.	Click		Refresh	list		to	see	if
the	tasks	are	finished	or	not.

MoMo	workshop

86GeoWebCache

Checking	the	cache	directory
Once	all	tasks	are	completed,	we	should	verify	the	content	of	the	cache	directory	we	created	above.	Given	that	everything	worked	fine
in	the	previous	step,	the	cache	directory	should	contain	a	lot	of	tiles	building	up	the	tile	pyramid	for	the	layer		countries	.

Open	the	terminal	and	navigate	to	the	GWC	cache	directory	for	the		countries		layer:

		$	cd	/opt/tomcat/webapps/geoserver/data/gwc/momo_countries

List	the	directory	contents	with:

		$	ls	-l

Explore	that	the	cache	directory	is	built	up	by	following	pattern:

		momo_countries/	(layername)

		|

		+--	momo-4326_07/	(gridset	name	+	zoom	level)

								|

								+--	07_03/	(internal	notation	based	on	gridset	+	zoom	level)

														|

														+--	0119_0057.png	(tile	index)

MoMo	workshop

87GeoWebCache

Checking	the	cache-headers
Finally	we	are	going	to	inspect	the	response	send	from	the	GeoServer/GeoWebCache	to	the	client	in	more	detail.	As	soon	as	a	layer	is
being	cached	by	GeoWebCache,	the	response	headers	of	single	tile	are	extended	by	the	following	HTTP-headers:

Header Description

geowebcache-cache-result If	the	tile	is	delivered	by	the	cache,	the	value	is	HIT	otherwise	it's	MISS.

geowebcache-crs The	coordinate	system	of	the	tile.

geowebcache-gridset The	name	of	the	underlying	gridset.

geowebcache-tile-bounds The	bounding	box	of	the	tile.

geowebcache-tile-index The	index	of	the	tile	(x,	y,	z)	in	the	gridset.

To	check	if	these	headers	are	set,	we	need	to	open	the	GeoServer	user	interface	again:

Go	to		Tile	Caching		❭		Tile	Layers	.
Find	the	layer		momo:countries		and	select		momo-4326	/	png		under		Preview	.

In	the	preview	window/tab	press		F12		to	open	the	browsers	Developer	Toolbar,	activate	the		Network		tab,	select	the		Img	
subsection	and	reload	the	page	to	record	the	network	activity.

MoMo	workshop

88GeoWebCache

Clear	the	list	content	with	the		Clear		button	()
Zoom	in	to	a	location	of	your	choice,	find	a	WMS	GetMap	request	in	the	developer	toolbar	and	select	it.	Explore	the	right	hand
sided	information	panel	and	find	the		Response	Headers		section.	In	this	you	should	find	the	headers	looking	similar	the	following
ones:

		geowebcache-cache-result:HIT

		geowebcache-crs:EPSG:4326

		geowebcache-gridset:momo-4326

		geowebcache-tile-bounds:158.05400771985825,54.880289022796376,206.3474373941237,103.17371869706184

		geowebcache-tile-index:[7,	3,	3]

MoMo	workshop

89GeoWebCache

Learn	Javascript
This	book	will	teach	you	the	basics	of	programming	and	Javascript.	Whether	you	are	an	experienced	programmer	or	not,	this	book	is
intended	for	everyone	who	wishes	to	learn	the	JavaScript	programming	language.

Screen

JavaScript	(JS	for	short)	is	the	programming	language	that	enables	web	pages	to	respond	to	user	interaction	beyond	the	basic	level.	It
was	created	in	1995,	and	is	today	one	of	the	most	famous	and	used	programming	languages.

MoMo	workshop

90JavaScript

Basics	about	Programming
In	this	first	chapter,	we'll	learn	the	basics	of	programming	and	the	Javascript	language.

Programming	means	writing	code.	A	book	is	made	up	of	chapters,	paragraphs,	sentences,	phrases,	words	and	finally	punctuation	and
letters,	likewise	a	program	can	be	broken	down	into	smaller	and	smaller	components.	For	now,	the	most	important	is	a	statement.	A
statement	is	analogous	to	a	sentence	in	a	book.	On	its	own,	it	has	structure	and	purpose,	but	without	the	context	of	the	other	statements
around	it,	it	isn't	that	meaningful.

A	statement	is	more	casually	(and	commonly)	known	as	a	line	of	code.	That's	because	statements	tend	to	be	written	on	individual	lines.
As	such,	programs	are	read	from	top	to	bottom,	left	to	right.	You	might	be	wondering	what	code	(also	called	source	code)	is.	That
happens	to	be	a	broad	term	which	can	refer	to	the	whole	of	the	program	or	the	smallest	part.	Therefore,	a	line	of	code	is	simply	a	line	of
your	program.

Here	is	a	simple	example:

var	hello	=	"Hello";

var	world	=	"World";

//	Message	equals	"Hello	World"

var	message	=	hello	+	"	"	+	world;

This	code	can	be	executed	by	another	program	called	an	interpreter	that	will	read	the	code,	and	execute	all	the	statements	in	the	right
order.

MoMo	workshop

91Basics

Comments
Comments	are	statements	that	will	not	be	executed	by	the	interpreter,	comments	are	used	to	mark	annotations	for	other	programmers	or
small	descriptions	of	what	your	code	does,	thus	making	it	easier	for	others	to	understand	what	your	code	does.

In	Javascript,	comments	can	be	written	in	2	different	ways:

Line	starting	with		//	:

//	This	is	a	comment,	it	will	be	ignored	by	the	interpreter

var	a	=	"this	is	a	variable	defined	in	a	statement";

Section	of	code	starting	with		/*	and	ending	with		*/	,	this	method	is	used	for	multi-line	comments:

/*

This	is	a	multi-line	comment,

it	will	be	ignored	by	the	interpreter

*/

var	a	=	"this	is	a	variable	defined	in	a	statement";

Exercise

Mark	the	editor's	contents	as	a	comment

Mark	me	as	a	comment

or	I'll	throw	an	error

MoMo	workshop

92Comments

Variables
The	first	step	towards	really	understanding	programming	is	looking	back	at	algebra.	If	you	remember	it	from	school,	algebra	starts	with
writing	terms	such	as	the	following.

3	+	5	=	8

You	start	performing	calculations	when	you	introduce	an	unknown,	for	example	x	below:

3	+	x	=	8

Shifting	those	around	you	can	determine	x:

x	=	8	-	3

->	x	=	5

When	you	introduce	more	than	one	you	make	your	terms	more	flexible	-	you	are	using	variables:

x	+	y	=	8

You	can	change	the	values	of	x	and	y	and	the	formula	can	still	be	true:

x	=	4

y	=	4

or

x	=	3

y	=	5

The	same	is	true	for	programming	languages.	In	programming,	variables	are	containers	for	values	that	change.	Variables	can	hold	all
kind	of	values	and	also	the	results	of	computations.	Variables	have	a	name	and	a	value	separated	by	an	equals	sign	(=).	Variable	names
can	be	any	letter	or	word,	but	bear	in	mind	that	there	are	restrictions	from	language	to	language	of	what	you	can	use,	as	some	words	are
reserved	for	other	functionality.

Let's	check	out	how	it	works	in	Javascript,	The	following	code	defines	two	variables,	computes	the	result	of	adding	the	two	and	defines
this	result	as	a	value	of	a	third	variable.

var	x	=	5;

var	y	=	6;

var	result	=	x	+	y;

MoMo	workshop

93Variables

Variable	types
Computers	are	sophisticated	and	can	make	use	of	more	complex	variables	than	just	numbers.	This	is	where	variable	types	come	in.
Variables	come	in	several	types	and	different	languages	support	different	types.

The	most	common	types	are:

Numbers
Float:	a	number,	like	1.21323,	4,	-33.5,	100004	or	0.123
Integer:	a	number	like	1,	12,	-33,	140	but	not	1.233

String:	a	line	of	text	like	"boat",	"elephant"	or	"damn,	you	are	tall!"
Boolean:	either	true	or	false,	but	nothing	else
Arrays:	a	collection	of	values	like:	1,2,3,4,'I	am	bored	now'
Objects:	a	representation	of	a	more	complex	object
null:	a	variable	that	contains	null	contains	no	valid	Number,	String,	Boolean,	Array,	or	Object
undefined:	the	undefined	value	is	obtained	when	you	use	an	object	property	that	does	not	exist,	or	a	variable	that	has	been
declared,	but	has	no	value	assigned	to	it.

JavaScript	is	a	“loosely	typed”	language,	which	means	that	you	don't	have	to	explicitly	declare	what	type	of	data	the	variables	are.	You
just	need	to	use	the		var		keyword	to	indicate	that	you	are	declaring	a	variable,	and	the	interpreter	will	work	out	what	data	type	you	are
using	from	the	context,	and	use	of	quotes.

Exercise

Create	a	variable	named	`a`	using	the	keyword	`var`.

MoMo	workshop

94Types

Equality
Programmers	frequently	need	to	determine	the	equality	of	variables	in	relation	to	other	variables.	This	is	done	using	an	equality
operator.

The	most	basic	equality	operator	is	the		==		operator.	This	operator	does	everything	it	can	to	determine	if	two	variables	are	equal,	even
if	they	are	not	of	the	same	type.

For	example,	assume:

var	foo	=	42;

var	bar	=	42;

var	baz	=	"42";

var	qux	=	"life";

	foo	==	bar		will	evaluate	to		true		and		baz	==	qux		will	evaluate	to		false	,	as	one	would	expect.	However,		foo	==	baz		will	also
evaluate	to		true		despite		foo		and		baz		being	different	types.	Behind	the	scenes	the		==		equality	operator	attempts	to	force	its
operands	to	the	same	type	before	determining	their	equality.	This	is	in	contrast	to	the		===		equality	operator.

The		===		equality	operator	determines	that	two	variables	are	equal	if	they	are	of	the	same	type	and	have	the	same	value.	With	the	same
assumptions	as	before,	this	means	that		foo	===	bar		will	still	evaluate	to		true	,	but		foo	===	baz		will	now	evaluate	to		false	.		baz
===	qux		will	still	evaluate	to		false	.

MoMo	workshop

95Equality

Numbers
JavaScript	has	only	one	type	of	numbers	–	64-bit	float	point.	It's	the	same	as	Java's		double	.	Unlike	most	other	programming
languages,	there	is	no	separate	integer	type,	so	1	and	1.0	are	the	same	value.

In	this	chapter,	we'll	learn	how	to	create	numbers	and	perform	operations	on	them	(like	additions	and	subtractions).

MoMo	workshop

96Numbers

Creation
Creating	a	number	is	easy,	it	can	be	done	just	like	for	any	other	variable	type	using	the		var		keyword.

Numbers	can	be	created	from	a	constant	value:

//	This	is	a	float:

var	a	=	1.2;

//	This	is	an	integer:

var	b	=	10;

Or	from	the	value	of	another	variable:

var	a	=	2;

var	b	=	a;

Exercise

Create	a	variable	`x`	which	equals	`10`	and	create	a	variable	`y`	which	equals	`a`.

var	a	=	11;

MoMo	workshop

97Creation

Operators
You	can	apply	mathematic	operations	to	numbers	using	some	basic	operators	like:

Addition:		c	=	a	+	b	
Subtraction:		c	=	a	-	b	
Multiplication:		c	=	a	*	b	
Division:		c	=	a	/	b	

You	can	use	parentheses	just	like	in	math	to	separate	and	group	expressions:		c	=	(a	/	b)	+	d	

Exercise

Create	a	variable	`x`	equal	to	the	sum	of	`a`	and	`b`	divided	by	`c`	and	finally	multiplied	by	`d`.

var	a	=	2034547;

var	b	=	1.567;

var	c	=	6758.768;

var	d	=	45084;

var	x	=

MoMo	workshop

98Basic	Operators

Advanced	Operators
Some	advanced	operators	can	be	used,	such	as:

Modulus	(division	remainder):		x	=	y	%	2	
Increment:	Given	a	=	5

	c	=	a++	,	Results:	c	=	5	and	a	=	6
	c	=	++a	,	Results:	c	=	6	and	a	=	6

Decrement:	Given	a	=	5
	c	=	a--	,	Results:	c	=	5	and	a	=	4
	c	=	--a	,	Results:	c	=	4	and	a	=	4

Exercise

Define	a	variable	`c`	as	the	modulus	of	the	decremented	value	of	`x`	by	3.

var	x	=	10;

var	c	=

MoMo	workshop

99Advanced	Operators

Strings
JavaScript	strings	share	many	similarities	with	string	implementations	from	other	high-level	languages.	They	represent	text	based
messages	and	data.

In	this	course	we	will	cover	the	basics.	How	to	create	new	strings	and	perform	common	operations	on	them.

Here	is	an	example	of	a	string:

"Hello	World"

MoMo	workshop

100Strings

Creation
You	can	define	strings	in	JavaScript	by	enclosing	the	text	in	single	quotes	or	double	quotes:

//	Single	quotes	can	be	used

var	str	=	'Our	lovely	string';

//	Double	quotes	as	well

var	otherStr	=	"Another	nice	string";

In	Javascript,	Strings	can	contain	UTF-8	characters:

"��	español	English	������	 ةيبرعلا 	português	�����	русский	���	������	���";

Note:	Strings	can	not	be	subtracted,	multiplied	or	divided.

Exercise

Create	a	variable	named	`str`	set	to	the	value	`"abc"`.

MoMo	workshop

101Creation

Concatenation
Concatenation	involves	adding	two	or	more	strings	together,	creating	a	larger	string	containing	the	combined	data	of	those	original
strings.	This	is	done	in	JavaScript	using	the	+	operator.

var	bigStr	=	'Hi	'	+	'JS	strings	are	nice	'	+	'and	'	+	'easy	to	add';

Exercise

Add	up	the	different	names	so	that	the	`fullName`	variable	contains	John's	complete	name.

var	firstName	=	"John";

var	lastName	=	"Smith";

var	fullName	=

MoMo	workshop

102Concatenation

Length
It's	easy	in	Javascript	to	know	how	many	characters	are	in	string	using	the	property		.length	.

//	Just	use	the	property	.length

var	size	=	'Our	lovely	string'.length;

Note:	Strings	can	not	be	substracted,	multiplied	or	divided.

Exercise

Store	in	the	variable	named	`size`	the	length	of	`str`.

var	str	=	"Hello	World";

var	size	=

MoMo	workshop

103Length

Conditional	Logic
A	condition	is	a	test	for	something.	Conditions	are	very	important	for	programming,	in	several	ways:

First	of	all	conditions	can	be	used	to	ensure	that	your	program	works,	regardless	of	what	data	you	throw	at	it	for	processing.	If	you
blindly	trust	data,	you’ll	get	into	trouble	and	your	programs	will	fail.	If	you	test	that	the	thing	you	want	to	do	is	possible	and	has	all	the
required	information	in	the	right	format,	that	won’t	happen,	and	your	program	will	be	a	lot	more	stable.	Taking	such	precautions	is	also
known	as	programming	defensively.

The	other	thing	conditions	can	do	for	you	is	allow	for	branching.	You	might	have	encountered	branching	diagrams	before,	for	example
when	filling	out	a	form.	Basically,	this	refers	to	executing	different	“branches”	(parts)	of	code,	depending	on	if	the	condition	is	met	or
not.

In	this	chapter,	we'll	learn	the	base	of	conditional	logic	in	Javascript.

MoMo	workshop

104Conditional	Logic

Condition	If
The	easiest	condition	is	an	if	statement	and	its	syntax	is		if(condition){	do	this	…	}	.	The	condition	has	to	be	true	for	the	code	inside
the	curly	braces	to	be	executed.	You	can	for	example	test	a	string	and	set	the	value	of	another	string	dependent	on	its	value:

var	country	=	'France';

var	weather;

var	food;

var	currency;

if(country	===	'England')	{

				weather	=	'horrible';

				food	=	'filling';

				currency	=	'pound	sterling';

}

if(country	===	'France')	{

				weather	=	'nice';

				food	=	'stunning,	but	hardly	ever	vegetarian';

				currency	=	'funny,	small	and	colourful';

}

if(country	===	'Germany')	{

				weather	=	'average';

				food	=	'wurst	thing	ever';

				currency	=	'funny,	small	and	colourful';

}

var	message	=	'this	is	'	+	country	+	',	the	weather	is	'	+

												weather	+	',	the	food	is	'	+	food	+	'	and	the	'	+

												'currency	is	'	+	currency;

Note:	Conditions	can	also	be	nested.

Exercise

Fill	up	the	value	of	`name`	to	validate	the	condition.

var	name	=

if	(name	===	"John")	{

}

MoMo	workshop

105If

Else
There	is	also	an		else		clause	that	will	be	applied	when	the	first	condition	isn’t	true.	This	is	very	powerful	if	you	want	to	react	to	any
value,	but	single	out	one	in	particular	for	special	treatment:

var	umbrellaMandatory;

if(country	===	'England'){

				umbrellaMandatory	=	true;

}	else	{

				umbrellaMandatory	=	false;

}

The		else		clause	can	be	joined	with	another		if	.	Lets	remake	the	example	from	the	previous	article:

if(country	===	'England')	{

				...

}	else	if(country	===	'France')	{

				...

}	else	if(country	===	'Germany')	{

				...

}

Exercise

Fill	up	the	value	of	`name`	to	validate	the	`else`	condition.

var	name	=

if	(name	===	"John")	{

}	else	if	(name	===	"Aaron")	{

				//	Valid	this	condition

}

MoMo	workshop

106Else

Comparators
Lets	now	focus	on	the	conditional	part:

if	(country	===	"France")	{

				...

}

The	conditional	part	is	the	variable		country		followed	by	the	three	equal	signs	(===).	Three	equal	signs	tests	if	the	variable		country	
has	both	the	correct	value	(France)	and	also	the	correct	type	(String).	You	can	test	conditions	with	double	equal	signs,	too,	however
a	conditional	such	as		if	(x	==	5)		would	then	return	true	for	both		var	x	=	5;		and		var	x	=	"5";	.	Depending	on	what
your	program	is	doing,	this	could	make	quite	a	difference.	It	is	highly	recommended	as	a	best	practice	that	you	always	compare	equality
with	three	equal	signs	(===		and		!==)	instead	of	two	(==		and		!=).

Other	conditional	test:

	x	>	a	:	is	x	bigger	than	a?
	x	<	a	:	is	x	less	than	a?
	x	<=	a	:	is	x	less	than	or	equal	to	a?
	x	>=a	:	is	x	greater	than	or	equal	to	a?
	x	!=	a	:	is	x	not	a?
	x	:	does	x	exist?

Exercise

Add	a	condition	to	change	the	value	of	`a`	to	the	number	10	if	`x`	is	bigger	than	5.

var	x	=	6;

var	a	=	0;

Logical	Comparison
In	order	to	avoid	the	if-else	hassle,	simple	logical	comparisons	can	be	utilised.

var	topper	=	(marks	>	85)	?	"YES"	:	"NO";

In	the	above	example,		?		is	a	logical	operator.	The	code	says	that	if	the	value	of	marks	is	greater	than	85	i.e.		marks	>	85		,	then
	topper	=	YES		;	otherwise		topper	=	NO		.	Basically,	if	the	comparison	condition	proves	true,	the	first	argument	is	accessed	and	if	the
comparison	condition	is	false	,	the	second	argument	is	accessed.

MoMo	workshop

107Comparators

Concatenate	conditions
Furthermore	you	can	concatenate	different	conditions	with	"or”	or	“and”	statements,	to	test	whether	either	statement	is	true,	or	both	are
true,	respectively.

In	JavaScript	“or”	is	written	as		||		and	“and”	is	written	as		&&	.

Say	you	want	to	test	if	the	value	of	x	is	between	10	and	20—you	could	do	that	with	a	condition	stating:

if(x	>	10	&&	x	<	20)	{

				...

}

If	you	want	to	make	sure	that	country	is	either	“England”	or	“Germany”	you	use:

if(country	===	'England'	||	country	===	'Germany')	{

				...

}

Note:	Just	like	operations	on	numbers,	Condtions	can	be	grouped	using	parenthesis,	ex:		if	((name	===	"John"	||	name
===	"Jennifer")	&&	country	===	"France")	.

Exercise

Fill	up	the	2	conditions	so	that	`primaryCategory`	equals	`"E/J"`	only	if	name	equals	`"John"`	and	country	is	`"England"`,	and	so
that	`secondaryCategory`	equals	`"E|J"`	only	if	name	equals	`"John"`	or	country	is	`"England"`

var	name	=	"John";

var	country	=	"England";

var	primaryCategory,	secondaryCategory;

if	(/*	Fill	here	*/)	{

				primaryCategory	=	"E/J";

}

if	(/*	Fill	here	*/)	{

				secondaryCategory	=	"E|J";

}

MoMo	workshop

108Concatenate

Arrays
Arrays	are	a	fundamental	part	of	programming.	An	array	is	a	list	of	data.	We	can	store	a	lot	of	data	in	one	variable,	which	makes	our
code	more	readable	and	easier	to	understand.	It	also	makes	it	much	easier	to	perform	functions	on	related	data.

The	data	in	arrays	are	called	elements.

Here	is	a	simple	array:

//	1,	1,	2,	3,	5,	and	8	are	the	elements	in	this	array

var	numbers	=	[1,	1,	2,	3,	5,	8];

MoMo	workshop

109Arrays

Indices
So	you	have	your	array	of	data	elements,	but	what	if	you	want	to	access	a	specific	element?	That	is	where	indices	come	in.	An	index
refers	to	a	spot	in	the	array.	indices	logically	progress	one	by	one,	but	it	should	be	noted	that	the	first	index	in	an	array	is	0,	as	it	is	in
most	languages.	Brackets	[]	are	used	to	signify	you	are	referring	to	an	index	of	an	array.

//	This	is	an	array	of	strings

var	fruits	=	["apple",	"banana",	"pineapple",	"strawberry"];

//	We	set	the	variable	banana	to	the	value	of	the	second	element	of

//	the	fruits	array.	Remember	that	indices	start	at	0,	so	1	is	the

//	second	element.	Result:	banana	=	"banana"

var	banana	=	fruits[1];

Exercise

Define	the	variables	using	the	indices	of	the	array

var	cars	=	["Mazda",	"Honda",	"Chevy",	"Ford"]

var	honda	=

var	ford	=

var	chevy	=

var	mazda	=

MoMo	workshop

110Indices

Length
Arrays	have	a	property	called	length,	and	it's	pretty	much	exactly	as	it	sounds,	it's	the	length	of	the	array.

var	array	=	[1	,	2,	3];

//	Result:	l	=	3

var	l	=	array.length;

Exercise

Define	the	variable	a	to	be	the	number	value	of	the	length	of	the	array

var	array	=	[1,	1,	2,	3,	5,	8];

var	l	=	array.length;

var	a	=

MoMo	workshop

111Length

Loops
Loops	are	repetitive	conditions	where	one	variable	in	the	loop	changes.	Loops	are	handy,	if	you	want	to	run	the	same	code	over	and
over	again,	each	time	with	a	different	value.

Instead	of	writing:

doThing(cars[0]);

doThing(cars[1]);

doThing(cars[2]);

doThing(cars[3]);

doThing(cars[4]);

You	can	write:

for	(var	i=0;	i	<	cars.length;	i++)	{	

				doThing(cars[i]);

}

MoMo	workshop

112Loops

For	Loop
The	easiest	form	of	a	loop	is	the	for	statement.	This	one	has	a	syntax	that	is	similar	to	an	if	statement,	but	with	more	options:

for(condition;	end	condition;	change){

				//	do	it,	do	it	now

}

Lets	for	example	see	how	to	execute	the	same	code	ten-times	using	a		for		loop:

for(var	i	=	0;	i	<	10;	i	=	i	+	1){

				//	do	this	code	ten-times

}

:		i	=	i	+	1		can	be	written		i++	.

Exercise

Using	a	for-loop,	create	a	variable	named	`message`	that	equals	the	concatenation	of	integers	(0,	1,	2,	...)	from	0	to	99.

var	message	=	"";

MoMo	workshop

113For

While	Loop
While	Loops	repetitively	execute	a	block	of	code	as	long	as	a	specified	condition	is	true.

while(condition){

				//	do	it	as	long	as	condition	is	true

}

For	example,	the	loop	in	this	example	will	repetitively	execute	its	block	of	code	as	long	as	the	variable	i	is	less	than	5:

var	i	=	0,	x	=	"";

while	(i	<	5)	{

				x	=	x	+	"The	number	is	"	+	i;

				i++;

}

The	Do/While	Loop	is	a	variant	of	the	while	loop.	This	loop	will	execute	the	code	block	once	before	checking	if	the	condition	is	true.	It
then	repeats	the	loop	as	long	as	the	condition	is	true:

do	{

				//	code	block	to	be	executed

}	while	(condition);

Note:	Be	careful	to	avoid	infinite	looping	if	the	condition	is	always	true!

Exercise

Using	a	while-loop,	create	a	variable	named	`message`	that	equals	the	concatenation	of	integers	(0,	1,	2,	...)	as	long	as	its	length
(`message.length`)	is	less	than	100.

var	message	=	"";

MoMo	workshop

114While

Do...While	Loop
The	do...while	statement	creates	a	loop	that	executes	a	specified	statement	until	the	test	condition	evaluates	to	be	false.	The	condition	is
evaluated	after	executing	the	statement.	Syntax	for	do...	while	is

do{

				//	statement

}

while(expression)	;

Lets	for	example	see	how	to	print	numbers	less	than	10	using		do...while		loop:

var	i	=	0;

do	{

				document.write(i	+	"	");

				i++;	//	incrementing	i	by	1		

}	while	(i	<	10);

:		i	=	i	+	1		can	be	written		i++	.

Exercise

Using	a	do...while-loop,	print	numbers	between	less	than	5.

var	i	=	0;

MoMo	workshop

115Do...While

Functions
Functions,	are	one	of	the	most	powerful	and	essential	notions	in	programming.

Functions	like	mathematical	functions	perform	transformations,	they	take	input	values	called	arguments	and	return	an	output	value.

MoMo	workshop

116Functions

Declaring	Functions
Functions,	like	variables,	must	be	declared.	Let's	declare	a	function		double		that	accepts	an	argument	called		x		and	returns	the
double	of	x	:

function	double(x)	{

				return	2	*	x;

}

Note:	the	function	above	may	be	referenced	before	it	has	been	defined.

Functions	are	also	values	in	JavaScript;	they	can	be	stored	in	variables	(just	like	numbers,	strings,	etc	...)	and	given	to	other	functions	as
arguments	:

var	double	=	function(x)	{

				return	2	*	x;

};

Note:	the	function	above	may	not	be	referenced	before	it	is	defined,	just	like	any	other	variable.

Exercise

Declare	a	function	named	`triple`	that	takes	an	argument	and	returns	its	triple.

MoMo	workshop

117Declare

Higher	Order	Functions
Higher	order	functions	are	functions	that	manipulate	other	functions.	For	example,	a	function	can	take	other	functions	as	arguments
and/or	produce	a	function	as	its	return	value.	Such	fancy	functional	techniques	are	powerful	constructs	available	to	you	in	JavaScript
and	other	high-level	languages	like	python,	lisp,	etc.

We	will	now	create	two	simple	functions,		add_2		and		double	,	and	a	higher	order	function	called		map	.		map		will	accept	two
arguments,		func		and		list		(its	declaration	will	therefore	begin		map(func,list)),	and	return	an	array.		func		(the	first	argument)
will	be	a	function	that	will	be	applied	to	each	of	the	elements	in	the	array		list		(the	second	argument).

//	Define	two	simple	functions

var	add_2	=	function(x)	{

				return	x	+	2;

};

var	double	=	function(x)	{

				return	2	*	x;

};

//	map	is	cool	function	that	accepts	2	arguments:

//		func				the	function	to	call

//		list				a	array	of	values	to	call	func	on

var	map	=	function(func,	list)	{

				var	output=[];														//	output	list

				for(idx	in	list)	{

								output.push(func(list[idx]));

				}

				return	output;

}

//	We	use	map	to	apply	a	function	to	an	entire	list

//	of	inputs	to	"map"	them	to	a	list	of	corresponding	outputs

map(add_2,	[5,6,7])	//	=>	[7,	8,	9]

map(double,	[5,6,7])	//	=>	[10,	12,	14]

The	functions	in	the	above	example	are	simple.	However,	when	passed	as	arguments	to	other	functions,	they	can	be	composed	in
unforeseen	ways	to	build	more	complex	functions.

For	example,	if	we	notice	that	we	use	the	invocations		map(add_2,	...)		and		map(double,	...)		very	often	in	our	code,	we	could
decide	we	want	to	create	two	special-purpose	list	processing	functions	that	have	the	desired	operation	baked	into	them.	Using	function
composition,	we	could	do	this	as	follows:

process_add_2	=	function(list)	{

				return	map(add_2,	list);

}

process_double	=	function(list)	{

				return	map(double,	list);

}

process_add_2([5,6,7])	//	=>	[7,	8,	9]

process_double([5,6,7])	//	=>	[10,	12,	14]

Now	let's	create	a	function	called		buildProcessor		that	takes	a	function		func		as	input	and	returns	a		func	-processor,	that	is,	a
function	that	applies		func		to	each	input	in	list.

MoMo	workshop

118Higher	order

//	a	function	that	generates	a	list	processor	that	performs

var	buildProcessor	=	function(func)	{

				var	process_func	=	function(list)	{

								return	map(func,	list);

				}

				return	process_func;

}

//	calling	buildProcessor	returns	a	function	which	is	called	with	a	list	input

//	using	buildProcessor	we	could	generate	the	add_2	and	double	list	processors	as	follows:

process_add_2	=	buildProcessor(add_2);

process_double	=	buildProcessor(double);

process_add_2([5,6,7])	//	=>	[7,	8,	9]

process_double([5,6,7])	//	=>	[10,	12,	14]

Let's	look	at	another	example.	We'll	create	a	function	called		buildMultiplier		that	takes	a	number		x		as	input	and	returns	a	function
that	multiplies	its	argument	by		x		:

var	buildMultiplier	=	function(x)	{

				return	function(y)	{

								return	x	*	y;

				}

}

var	double	=	buildMultiplier(2);

var	triple	=	buildMultiplier(3);

double(3);	//	=>	6

triple(3);	//	=>	9

Exercise

Define	a	function	named	`negate`	that	takes	`add1`	as	argument	and	returns	a	function,	that	returns	the	negation	of	the	value
returned	by	`add1`.	(Things	get	a	bit	more	complicated	;))

var	add1	=	function	(x)	{

				return	x	+	1;

};

var	negate	=	function(func)	{

				//	TODO

};

//	Should	return	-6

//	Because	(5+1)	*	-1	=	-6

negate(add1)(5);

MoMo	workshop

119Higher	order

Objects
The	primitive	types	of	JavaScript	are		true	,		false	,	numbers,	strings,		null		and		undefined	.	Every	other	value	is	an		object	.

In	JavaScript	objects	contain		propertyName	:		propertyValue		pairs.

MoMo	workshop

120Objects

Creation
There	are	two	ways	to	create	an		object		in	JavaScript:

1.	 literal

	var	object	=	{};

			//	Yes,	simply	a	pair	of	curly	braces!

this	is	the	recomended	way.

2.	 and	object-oriented

	var	object	=	new	Object();

it's	almost	like	Java.

MoMo	workshop

121Creation

Properties
Object's	property	is	a		propertyName	:		propertyValue		pair,	where	property	name	can	be	only	a	string.	If	it's	not	a	string,	it	gets
casted	into	a	string.	You	can	specify	properties	when	creating	an	object	or	later.	There	may	be	zero	or	more	properties	separated	by
commas.

var	language	=	{

				name:	'JavaScript',

				isSupportedByBrowsers:	true,

				createdIn:	1995,

				author:{

								firstName:	'Brendan',

								lastName:	'Eich'

				},

	//	Yes,	objects	can	be	nested!

				getAuthorFullName:	function(){

								return	this.author.firstName	+	"	"	+	this.author.lastName;				

				}

	//	Yes,	functions	can	be	values	too!

};

The	following	code	demonstates	how	to	get	a	property's	value.

var	variable	=	language.name;

	//	variable	now	contains	"JavaScript"	string.

				variable	=	language['name'];

	//	The	lines	above	do	the	same	thing.	The	difference	is	that	the	second	one	lets	you	use	litteraly	any	string	as	a	property	name,	but	it's	less	readable.	

				variable	=	language.newProperty;	

	//	variable	is	now	undefined,	because	we	have	not	assigned	this	property	yet.

The	following	example	shows	how	to	add	a	new	property	or	change	an	existing	one.

language.newProperty	=	'new	value';

	//	Now	the	object	has	a	new	property.	If	the	property	already	exists,	its	value	will	be	replaced.

language['newProperty']	=	'changed	value';

	//	Once	again,	you	can	access	properties	both	ways.	The	first	one	(dot	notation)	is	recomended.

MoMo	workshop

122Properties

Mutable
The	difference	between	objects	and	primitive	values	is	that	we	can	change	objects,	whereas	primitive	values	are	immutable.

var	myPrimitive	=	"first	value";

				myPrimitive	=	"another	value";

	//	myPrimitive	now	points	to	another	string.

var	myObject	=	{	key:	"first	value"};

				myObject.key	=	"another	value";

	//	myObject	points	to	the	same	object.

MoMo	workshop

123Mutable

Reference
Objects	are	never	copied.	They	are	passed	around	by	reference.

//	Imagine	I	had	a	pizza

var	myPizza	=	{slices:	5};

	//	And	I	shared	it	with	You

var	yourPizza	=	myPizza;

	//	I	eat	another	slice

myPizza.slices	=	myPizza.slices	-	1;

var	numberOfSlicesLeft	=	yourPizza.slices;

	//	Now	We	have	4	slices	because	myPizza	and	yourPizza

	//	reference	to	the	same	pizza	object.

var	a	=	{},	b	=	{},	c	=	{};

	//	a,	b,	and	c	each	refer	to	a

	//	different	empty	object

a	=	b	=	c	=	{};

	//	a,	b,	and	c	all	refer	to

	//	the	same	empty	object

MoMo	workshop

124Reference

Prototype
Every	object	is	linked	to	a	prototype	object	from	which	it	inherits	properties.

All	objects	created	from	object	literals	({})	are	automatically	linked	to	Object.prototype,	which	is	an	object	that	comes	standard	with
JavaScript.

When	a	JavaScript	interpreter	(a	module	in	your	browser)	tries	to	find	a	property,	which	You	want	to	retrieve,	like	in	the	following	code:

var	adult	=	{age:	26},

				retrievedProperty	=	adult.age;

	//	The	line	above

First,	the	interpreter	looks	through	every	property	the	object	itself	has.	For	example,		adult		has	only	one	own	property	—		age	.	But
besides	that	one	it	actually	has	a	few	more	properties,	which	were	inherited	from	Object.prototype.

var	stringRepresentation	=	adult.toString();

	//	the	variable	has	value	of	'[object	Object]'

	toString		is	an	Object.prototype's	property,	which	was	inherited.	It	has	a	value	of	a	function,	which	returns	a	string	representation	of
the	object.	If	you	want	it	to	return	a	more	meaningful	representation,	then	you	can	override	it.	Simply	add	a	new	property	to	the	adult
object.

adult.toString	=	function(){

				return	"I'm	"+this.age;

}

If	you	call	the		toString		function	now,	the	interpreter	will	find	the	new	property	in	the	object	itself	and	stop.

Thus	the	interpreter	retrieves	the	first	property	it	will	find	on	the	way	from	the	object	itself	and	further	through	its	prototype.

To	set	your	own	object	as	a	prototype	instead	of	the	default	Object.prototype,	you	can	invoke		Object.create		as	follows:

var	child	=	Object.create(adult);

	/*	This	way	of	creating	objects	lets	us	easily	replace	the	default	Object.prototype	with	the	one	we	want.	In	this	case,	the	child's	prototype	is	the	adult	object.	*/

child.age	=	8;

	/*	Previously,	child	didn't	have	its	own	age	property,	and	the	interpreter	had	to	look	further	to	the	child's	prototype	to	find	it.

	Now,	when	we	set	the	child's	own	age,	the	interpreter	will	not	go	further.

	Note:	adult's	age	is	still	26.	*/

var	stringRepresentation	=	child.toString();

	//	The	value	is	"I'm	8".

	/*	Note:	we	have	not	overridden	the	child's	toString	property,	thus	the	adult's	method	will	be	invoked.	If	adult	did	not	have	toString	property,	then	Object.prototype's	toString	method	would	be	invoked,	and	we	would	get	"[object	Object]"	instead	of	"I'm	8"	*/

	child	's	prototype	is		adult	,	whose	prototype	is		Object.prototype	.	This	sequence	of	prototypes	is	called	prototype	chain.

MoMo	workshop

125Prototype

Delete
	delete		can	be	used	to	remove	a	property	from	an	object.	It	will	remove	a	property	from	the	object	if	it	has	one.	It	will	not	look
further	in	the	prototype	chain.	Removing	a	property	from	an	object	may	allow	a	property	from	the	prototype	chain	to	shine	through:

var	adult	=	{age:26},

				child	=	Object.create(adult);

				child.age	=	8;

delete	child.age;

	/*	Remove	age	property	from	child,	revealing	the	age	of	the	prototype,	because	then	it	is	not	overriden.	*/

var	prototypeAge	=	child.age;

	//	26,	because	child	does	not	have	its	own	age	property.

MoMo	workshop

126Delete

Enumeration
The		for	in		statement	can	loop	over	all	of	the	property	names	in	an	object.	The	enumeration	will	include	functions	and	prototype
properties.

var	fruit	=	{

				apple:	2,

				orange:5,

				pear:1

},

sentence	=	'I	have	',

quantity;

for	(kind	in	fruit){

				quantity	=	fruit[kind];

				sentence	+=	quantity+'	'+kind+

																(quantity===1?'':'s')+

																',	';

}

	//	The	following	line	removes	the	trailing	coma.

sentence	=	sentence.substr(0,sentence.length-2)+'.';

	//	I	have	2	apples,	5	oranges,	1	pear.

MoMo	workshop

127Enumeration

Global	footprint
If	you	are	developing	a	module,	which	might	be	running	on	a	web	page,	which	also	runs	other	modules,	then	you	must	beware	the
variable	name	overlapping.

Suppose	we	are	developing	a	counter	module:

var	myCounter	=	{

				number	:	0,

				plusPlus	:	function(){

								this.number	:	this.number	+	1;

				},

				isGreaterThanTen	:	function(){

								return	this.number	>	10;

				}

}

this	technique	is	often	used	with	closures,	to	make	the	internal	state	immutable	from	the	outside.

The	module	now	takes	only	one	variable	name	—		myCounter	.	If	any	other	module	on	the	page	makes	use	of	such	names	like		number	
or		isGreaterThanTen		then	it's	perfectly	safe,	because	we	will	not	override	each	others	values;

MoMo	workshop

128Global	footprint

OpenLayers	Workshop
Welcome	to	the	OpenLayers	3	Workshop.	This	workshop	is	designed	to	give	you	a	comprehensive	overview	of	OpenLayers	as	a	web
mapping	solution.

Setup

These	instructions	assume	that	you	are	starting	with	an		openlayers-workshop.zip		archive	from	the	latest	workshop	release.	In
addition,	you'll	need	Node	installed	to	run	a	development	server	for	the	OpenLayers	library.

After	extracting	the	zip,	change	into	the		openlayers-workshop		directory	and	install	some	additional	dependencies:

npm	install

Now	you're	ready	to	start	the	workshop	server.	This	serves	up	the	workshop	documentation	in	addition	to	providing	a	debug	loader	for
the	OpenLayers	library.

npm	start

This	will	start	a	development	server	where	you	can	read	the	workshop	documentation	and	work	through	the	exercises:
http://terrestris.github.io/momo3-ws/.

Overview
This	workshop	is	presented	as	a	set	of	modules.	In	each	module	you	will	perform	a	set	of	tasks	designed	to	achieve	a	specific	goal	for
that	module.	Each	module	builds	upon	lessons	learned	in	previous	modules	and	is	designed	to	iteratively	build	up	your	knowledge	base.

The	following	modules	will	be	covered	in	this	workshop:

Basics	-	Learn	how	to	add	a	map	to	a	webpage	with	OpenLayers.
Layers	and	Sources	-	Learn	about	layers	and	sources.
Controls	and	Interactions	-	Learn	about	using	map	controls	and	interactions.
Vector	Topics	-	Explore	vector	layers	in	depth.
Custom	Builds	-	Create	custom	builds.

MoMo	workshop

129OpenLayers

https://github.com/openlayers/workshop/releases
https://nodejs.org/
http://terrestris.github.io/momo3-ws/

Basics
Creating	a	map
Dissecting	your	map
Useful	resources

MoMo	workshop

130Basics

Creating	a	Map
In	OpenLayers,	a	map	is	a	collection	of	layers	and	various	interactions	and	controls	for	dealing	with	user	interaction.	A	map	is	generated
with	three	basic	ingredients:	markup,	style	declarations,	and	initialization	code.

Working	Example

Let's	take	a	look	at	a	fully	working	example	of	an	OpenLayers	3	map.

<!doctype	html>

<html	lang="en">

		<head>

				<link	rel="stylesheet"	href="/ol.css"	type="text/css">

				<style>

						#map	{

								height:	256px;

								width:	512px;

						}

				</style>

				<title>OpenLayers	3	example</title>

				<script	src="/loader.js"	type="text/javascript"></script>

		</head>

		<body>

				<h1>My	Map</h1>

				<div	id="map"></div>

				<script	type="text/javascript">

						var	map	=	new	ol.Map({

								target:	'map',

								layers:	[

										new	ol.layer.Tile({

												title:	'Global	Imagery',

												source:	new	ol.source.TileWMS({

														url:	'http://demo.opengeo.org/geoserver/wms',

														params:	{LAYERS:	'nasa:bluemarble',	VERSION:	'1.1.1'}

												})

										})

],

								view:	new	ol.View({

										projection:	'EPSG:4326',

										center:	[0,	0],

										zoom:	0,

										maxResolution:	0.703125

								})

						});

				</script>

		</body>

</html>

Tasks

1.	 Make	sure	you've	completed	the	setup	instructions	to	install	dependencies	and	get	the	debug	server	running.
2.	 Copy	the	text	above	into	a	new	file	called		map.html	,	and	save	it	in	the	root	of	the	workshop	directory.
3.	 Open	the	working	map	in	your	web	browser:	http://terrestris.github.io/momo3-ws//map.html

MoMo	workshop

131Creating	a	map

http://terrestris.github.io/momo3-ws//map.html

A	working	map	displaying	imagery	of	the	world

Having	successfully	created	our	first	map,	we'll	continue	by	looking	more	closely	at	the	parts.

MoMo	workshop

132Creating	a	map

Dissecting	Your	Map
As	demonstrated	in	the	previous	section,	a	map	is	generated	by	bringing	together	markup,	style	declarations,	and	initialization	code.
We'll	look	at	each	of	these	parts	in	a	bit	more	detail.

Map	Markup

The	markup	for	the	map	in	the	previous	example	generates	a	single	document	element:

<div	id="map"></div>

This		<div>		element	will	serve	as	the	container	for	our	map	viewport.	Here	we	use	a		<div>		element,	but	the	container
for	the	viewport	can	be	any	block-level	element.

In	this	case,	we	give	the	container	an		id		attribute	so	we	can	reference	it	as	the	target	of	our	map.

Map	Style

OpenLayers	comes	with	a	default	stylesheet	that	specifies	how	map-related	elements	should	be	styled.	We've	explicitly	included	this
stylesheet	in	the		map.html		page	(<link	rel="stylesheet"	href="/ol.css"
type="text/css">).

OpenLayers	doesn't	make	any	guesses	about	the	size	of	your	map.	Because	of	this,	following	the	default	stylesheet,	we	need	to	include
at	least	one	custom	style	declaration	to	give	the	map	some	room	on	the	page.

<link	rel="stylesheet"	href="/ol.css"	type="text/css">

		<style>

				#map	{

						height:	256px;

						width:	512px;

				}

		</style>

In	this	case,	we're	using	the	map	container's		id		value	as	a	selector,	and	we	specify	the	width	(512px)	and	the	height	(256px)	for	the
map	container.

The	style	declarations	are	directly	included	in	the		<head>		of	our	document.	In	most	cases,	your	map	related	style	declarations
will	be	a	part	of	a	larger	website	theme	linked	in	external	stylesheets.

Map	Initialization
The	next	step	in	generating	your	map	is	to	include	some	initialization	code.	In	our	case,	we	have	included	a		<script>		element
at	the	bottom	of	our	document		<body>		to	do	the	work:

MoMo	workshop

133Dissecting	your	map

<script>

				var	map	=	new	ol.Map({

						target:	'map',

						layers:	[

								new	ol.layer.Tile({

										source:	new	ol.source.TileWMS({

												url:	'http://demo.opengeo.org/geoserver/wms',

												params:	{LAYERS:	'nasa:bluemarble',	VERSION:	'1.1.1'}

										})

								})

],

						view:	new	ol.View({

								projection:	'EPSG:4326',

								center:	[0,	0],

								zoom:	0,

								maxResolution:	0.703125

						})

				});

		</script>

The	order	of	these	steps	is	important.	Before	our	custom	script	can	be	executed,	the	OpenLayers	library	must	be	loaded.	In	our	example,
the	OpenLayers	library	is	loaded	in	the		<head>		of	our	document	with		<script
src="/loader.js"></script>	.

Similarly,	our	custom	map	initialization	code	(above)	cannot	run	until	the	document	element	that	serves	as	the	viewport	container,	in
this	case		<div	id="map"></div>	,	is	ready.	By	including	the	initialization	code	at	the	end	of	the	document
	<body>	,	we	ensure	that	the	library	is	loaded	and	the	viewport	container	is	ready	before	generating	our	map.

Let's	look	in	more	detail	at	what	the	map	initialization	script	is	doing.	Our	script	creates	a	new		ol.Map		object	with	a	few	config
options:

target:	'map'

We	use	the	viewport	container's		id		attribute	value	to	tell	the	map	constructor	where	to	render	the	map.	In	this	case,	we	pass	the	string
value		"map"		as	the	target	to	the	map	constructor.	This	syntax	is	a	shortcut	for	convenience.	We	could	be	more	explicit	and
provide	a	direct	reference	to	the	element	(e.g.		document.getElementById("map")).

The	layers	config	creates	a	layer	to	be	displayed	in	our	map:

layers:	[

				new	ol.layer.Tile({

						source:	new	ol.source.TileWMS({

								url:	'http://demo.opengeo.org/geoserver/wms',

								params:	{LAYERS:	'nasa:bluemarble',	VERSION:	'1.1.1'}

						})

				})

],

Don't	worry	about	the	syntax	here	if	this	part	is	new	to	you.	Layer	creation	will	be	covered	in	another	module.	The	important	part	to
understand	is	that	our	map	view	is	a	collection	of	layers.	In	order	to	see	a	map,	we	need	to	include	at	least	one	layer.

The	final	step	is	defining	the	view.	We	specify	a	projection,	a	center	and	a	zoom	level.	We	also	specify	a		maxResolution		to	make	sure
we	don't	request	bounding	boxes	that	GeoWebCache	cannot	handle.

view:	new	ol.View({

					projection:	'EPSG:4326',

					center:	[0,	0],

					zoom:	0,

					maxResolution:	0.703125

		})

You've	successfully	dissected	your	first	map!	Next	let's	learn	more	about	developing	with	OpenLayers.

MoMo	workshop

134Dissecting	your	map

MoMo	workshop

135Dissecting	your	map

OpenLayers	Resources
The	OpenLayers	library	contains	a	wealth	of	functionality.	Though	the	developers	have	worked	hard	to	provide	examples	of	that
functionality	and	have	organized	the	code	in	a	way	that	allows	other	experienced	developers	to	find	their	way	around,	many	users	find	it
a	challenge	to	get	started	from	scratch.

Learn	by	Example

New	users	will	most	likely	find	diving	into	the	OpenLayer's	example	code	and	experimenting	with	the	library's	possible	functionality
the	most	useful	way	to	begin.

http://openlayers.org/en/master/examples/

Browse	the	Documentation

For	further	information	on	specific	topics,	browse	the	growing	collection	of	OpenLayers	documentation.

http://openlayers.org/en/master/doc/quickstart.html
http://openlayers.org/en/master/doc/tutorials

Find	the	API	Reference
After	understanding	the	basic	components	that	make-up	and	control	a	map,	search	the	API	reference	documentation	for	details	on
method	signatures	and	object	properties.	If	you	only	want	to	see	the	stable	part	of	the	API,	make	sure	to	check	the		Stable	Only	
checkbox.

http://openlayers.org/en/master/apidoc/

Join	the	Community

OpenLayers	is	supported	and	maintained	by	a	community	of	developers	and	users	like	you.	Whether	you	have	questions	to	ask	or	code
to	contribute,	you	can	get	involved	by	using	the		openlayers-3		tag	on	StackOverflow	for	usage	questions	or	signing	up	for	the
developers	mailing	list.

http://stackoverflow.com/questions/tagged/openlayers-3
https://groups.google.com/forum/#!forum/ol3-dev

Reporting	issues
For	reporting	issues	it	is	important	to	understand	the	several	flavours	in	which	the	OpenLayers	library	is	distributed:

	ol.js		-	the	script	which	is	built	using	the	Closure	Compiler	in	advanced	mode	(not	human	readable)
	ol-debug.js		-	human	readable	version	to	be	used	during	development

When	you	encounter	an	issue,	it	is	important	to	report	the	issue	using		ol-debug.js	.	Also	include	the	full	stack	trace	which	you	can
find	using	Web	Developer	tools	such	as	Chrome's	Developer	Tools.	To	test	this	out	we	are	going	to	make	a	mistake	in	map.html	by
changing		ol.layer.Tile		into		ol.layer.Image	.	The	error	you	will	see	is:		Uncaught	TypeError:	undefined	is	not	a	function	.	If
you	report	this	to	the	mailing	list,	nobody	will	know	what	it	means.	So	first,	we	are	going	to	change	the	script	tag	which	points	to
	ol.js		to	point	to		ol-debug.js		instead.	Reload	the	page.	The	debugger	will	now	stop	on	the	error,	and	we	can	see	the	full	stack	trace.

MoMo	workshop

136Resources

http://openlayers.org/en/master/examples/
http://openlayers.org/en/master/doc/quickstart.html
http://openlayers.org/en/master/doc/tutorials
http://openlayers.org/en/master/apidoc/
http://stackoverflow.com/questions/tagged/openlayers-3
https://groups.google.com/forum/#!forum/ol3-dev

At	a	breakpoint	in	the	debugger

MoMo	workshop

137Resources

Layers	and	Sources
WMS	sources
Tiled	sources
Proprietary	tile	providers
Vector	data
Image	vector	source

MoMo	workshop

138Layers	and	Sources

Web	Map	Service	Layers
When	you	add	a	layer	to	your	map,	the	layer's	source	is	typically	responsible	for	fetching	the	data	to	be	displayed.	The	data	requested
can	be	either	raster	or	vector	data.	You	can	think	of	raster	data	as	information	rendered	as	an	image	on	the	server	side.	Vector	data	is
delivered	as	structured	information	from	the	server	and	may	be	rendered	for	display	on	the	client	(your	browser).

There	are	many	different	types	of	services	that	provide	raster	map	data.	This	section	deals	with	providers	that	conform	with	the	OGC
(Open	Geospatial	Consortium,	Inc.)	Web	Map	Service	(WMS)	specification.

Creating	a	Layer

We'll	start	with	a	fully	working	map	example	and	modify	the	layers	to	get	an	understanding	of	how	they	work.

Let's	take	a	look	at	the	following	code:

<!doctype	html>

<html	lang="en">

		<head>

				<link	rel="stylesheet"	href="/ol.css"	type="text/css">

				<style>

						#map	{

								height:	256px;

								width:	512px;

						}

				</style>

				<script	src="/loader.js"	type="text/javascript"></script>

				<title>OpenLayers	3	example</title>

		</head>

		<body>

				<h1>My	Map</h1>

				<div	id="map"></div>

				<script	type="text/javascript">

						var	map	=	new	ol.Map({

								target:	'map',

								layers:	[

										new	ol.layer.Tile({

												title:	'Global	Imagery',

												source:	new	ol.source.TileWMS({

														url:	'http://demo.opengeo.org/geoserver/wms',

														params:	{LAYERS:	'nasa:bluemarble',	VERSION:	'1.1.1'}

												})

										})

],

								view:	new	ol.View({

										projection:	'EPSG:4326',

										center:	[0,	0],

										zoom:	0,

										maxResolution:	0.703125

								})

						});

				</script>

		</body>

</html>

Tasks

1.	 If	you	haven't	already	done	so,	save	the	text	above	as		map.html		in	the	root	of	your	workshop	directory.
2.	 Open	the	page	in	your	browser	to	confirm	things	work:	http://terrestris.github.io/momo3-ws//map.html

The		ol.layer.Tile		Constructor

MoMo	workshop

139WMS	sources

http://www.opengeospatial.org/standards/wms
http://terrestris.github.io/momo3-ws//map.html

The		ol.layer.Tile		constructor	gets	an	object	literal	of	type		olx.layer.TileOptions		see:
http://openlayers.org/en/master/apidoc/ol.layer.Tile.html	In	this	case	we	are	providing	the	source	key	of	the	options	with	an
	ol.source.TileWMS	.	A	human-readable	title	for	the	layer	can	be	provided	with	the	title	key,	but	basically	any	arbitrary	name	for	the
key	can	be	used	here.	In	OpenLayers	3	there	is	a	separation	between	layers	and	sources,	whereas	in	OpenLayers	2	this	was	all	part	of
the	layer.

	ol.layer.Tile		represents	a	regular	grid	of	images,		ol.layer.Image		represents	a	single	image.	Depending	on	the	layer	type,	you
would	use	a	different	source	(ol.source.TileWMS		versus		ol.source.ImageWMS)	as	well.

The	ol.source.TileWMS	Constructor

The		ol.source.TileWMS		constructor	has	a	single	argument	which	is	defined	by:
http://openlayers.org/en/master/apidoc/ol.source.TileWMS.html.	The	url	is	the	online	resource	of	the	WMS	service,	and	params	is	an
object	literal	with	the	parameter	names	and	their	values.	Since	the	default	WMS	version	is	1.3.0	now	in	OpenLayers,	you	might	need	to
provide	a	lower	version	in	the	params	if	your	WMS	does	not	support	WMS	1.3.0.

layers:	[

				new	ol.layer.Tile({

						title:	'Global	Imagery',

						source:	new	ol.source.TileWMS({

								url:	'http://demo.opengeo.org/geoserver/wms',

								params:	{LAYERS:	'nasa:bluemarble',	VERSION:	'1.1.1'}

						})

				})

]

Tasks

1.	 This	same	WMS	offers	a	Natural	Earth	layer	named		'ne:NE1_HR_LC_SR_W_DR'	.	Change	the	value	of	the		LAYERS	
parameter	from		'nasa:bluemarble'		to		'ne:NE1_HR_LC_SR_W_DR'	.	Your	revised	ol.layer.Tile	Constructor
should	look	like:

	new	ol.layer.Tile({

				title:	'Global	Imagery',

				source:	new	ol.source.TileWMS({

						url:	'http://demo.opengeo.org/geoserver/wms',

						params:	{LAYERS:	'ne:NE1_HR_LC_SR_W_DR',	VERSION:	'1.1.1'}

				})

		})

2.	 Change	your	layer	and	source	to	have	a	single	image	instead	of	tiles.	Look	at	the	following	API	doc	pages	for	hints:
http://openlayers.org/en/master/apidoc/ol.layer.Image.html	and	http://openlayers.org/en/master/apidoc/ol.source.ImageWMS.html.
Use	the	Network	tab	of	your	browser's	developer	tools	to	make	sure	a	single	image	is	requested	and	not	256x256	pixel	tiles.	

MoMo	workshop

140WMS	sources

http://openlayers.org/en/master/apidoc/ol.layer.Tile.html
http://openlayers.org/en/master/apidoc/ol.source.TileWMS.html
http://www.naturalearthdata.com/
http://openlayers.org/en/master/apidoc/ol.layer.Image.html
http://openlayers.org/en/master/apidoc/ol.source.ImageWMS.html

Having	worked	with	dynamically	rendered	data	from	a	Web	Map	Service,	let's	move	on	to	learn	about	cached	tile	services.

MoMo	workshop

141WMS	sources

Cached	Tiles
By	default,	the	Tile	layer	makes	requests	for	256	x	256	(pixel)	images	to	fill	your	map	viewport	and	beyond.	As	you	pan	and	zoom
around	your	map,	more	requests	for	images	go	out	to	fill	the	areas	you	haven't	yet	visited.	While	your	browser	will	cache	some
requested	images,	a	lot	of	processing	work	is	typically	required	for	the	server	to	dynamically	render	images.

Since	tiled	layers	make	requests	for	images	on	a	regular	grid,	it	is	possible	for	the	server	to	cache	these	image	requests	and	return	the
cached	result	next	time	you	(or	someone	else)	visits	the	same	area	-	resulting	in	better	performance	all	around.

	ol.source.XYZ	

The	Web	Map	Service	specification	allows	a	lot	of	flexibility	in	terms	of	what	a	client	can	request.	Without	constraints,	this	makes
caching	difficult	or	impossible	in	practice.

At	the	opposite	extreme,	a	service	might	offer	tiles	only	at	a	fixed	set	of	zoom	levels	and	only	for	a	regular	grid.	These	can	be
generalized	as	tiled	layers	with	an	XYZ	source	-	you	can	consider	X	and	Y	to	indicate	the	column	and	row	of	the	grid	and	Z	to	represent
the	zoom	level.

	ol.source.OSM	

The	OpenStreetMap	(OSM)	project	is	an	effort	to	collect	and	make	freely	available	map	data	for	the	world.	OSM	provides	a	few
different	renderings	of	their	data	as	cached	tile	sets.	These	renderings	conform	to	the	basic	XYZ	grid	arrangement	and	can	be	used	in	an
OpenLayers	map.	The		ol.source.OSM		layer	source	accesses	OpenStreetMap	tiles.

Tasks

1.	 Open	the		map.html		file	from	the	previous	section	in	a	text	editor	and	change	the	map	initialization	code	to	look	like	the
following:

	<script>

				var	map	=	new	ol.Map({

						target:	'map',

						layers:	[

								new	ol.layer.Tile({

										source:	new	ol.source.OSM()

								})

],

						view:	new	ol.View({

								center:	ol.proj.fromLonLat([126.97,	37.56]),

								zoom:	9

						}),

						controls:	ol.control.defaults({

								attributionOptions:	{

										collapsible:	false

								}

						})

				});

		</script>

2.	 In	the		<head>		of	the	same	document,	add	a	few	style	declarations	for	the	layer	attribution.

MoMo	workshop

142Tiled	sources

http://www.openstreetmap.org/

<style>

					#map	{

									width:	512px;

									height:	256px;

					}

					.ol-attribution	a	{

									color:	black;

					}

	</style>

3.	 Save	your	changes,	and	refresh	the	page	in	your	browser:	http://terrestris.github.io/momo3-ws//map.html	

A	Closer	Look

Projections

Review	the	view	definition	of	the	map:

view:	new	ol.View({

				center:	ol.proj.fromLonLat([126.97,	37.56]),

				zoom:	9

		})

Geospatial	data	can	come	in	any	number	of	coordinate	reference	systems.	One	data	set	might	use	geographic	coordinates	(longitude	and
latitude)	in	degrees,	and	another	might	have	coordinates	in	a	local	projection	with	units	in	meters.	A	full	discussion	of	coordinate
reference	systems	is	beyond	the	scope	of	this	module,	but	it	is	important	to	understand	the	basic	concept.

OpenLayers	3	needs	to	know	the	coordinate	system	for	your	data.	Internally,	this	is	represented	with	an		ol.proj.Projection		object
but	strings	can	also	be	supplied.

The	OpenStreetMap	tiles	that	we	will	be	using	are	in	a	Mercator	projection.	Because	of	this,	we	need	to	set	the	initial	center	using
Mercator	coordinates.	Since	it	is	relatively	easy	to	find	out	the	coordinates	for	a	place	of	interest	in	geographic	coordinates,	we	use	the
	ol.proj.fromLonLat		method	to	turn	geographic	coordinates	('EPSG:4326')	into	Mercator	coordinates
('EPSG:3857').

Alternative	Projections

OpenLayers	3	includes	transforms	between	Geographic	('EPSG:4326')	and	Web	Mercator	('EPSG:3857')
coordinate	reference	systems.	Because	of	this,	we	can	use	the		ol.proj.fromLonLat		function	above	without	any	extra	work.	If	you
want	to	work	with	data	in	a	different	projection,	you	need	to	include	some	additional	information	before	using	the		ol.proj.*	
functions.

MoMo	workshop

143Tiled	sources

http://terrestris.github.io/momo3-ws//map.html

For	example,	if	you	wanted	to	work	with	data	in	the		'EPSG:21781'		coordinate	reference	system,	you	would	include	the
following	two	script	tags	in	your	page:

<script	src="http://cdnjs.cloudflare.com/ajax/libs/proj4js/2.3.6/proj4.js"	type="text/javascript"></script>

		<script	src="http://epsg.io/21781-1753.js"	type="text/javascript"></script>

Then	in	your	application	code,	you	could	register	this	projection	and	set	its	validity	extent	as	follows:

//	This	creates	a	projection	object	for	the	EPSG:21781	projection

		//	and	sets	a	"validity	extent"	in	that	projection	object.

		var	projection	=	ol.proj.get('EPSG:21781');

		projection.setExtent([485869.5728,	76443.1884,	837076.5648,	299941.7864]);

The	extent	information	can	be	looked	up	at	http://epsg.io/,	using	the	EPSG	code.

Layer	Creation

layers:	[

				new	ol.layer.Tile({

						source:	new	ol.source.OSM()

				})

],

As	before,	we	create	a	layer	and	add	it	to	the	layers	array	of	our	map	config	object.	This	time,	we	accept	all	the	default	options	for	the
source.

Style

.ol-attribution	a	{

				color:	black;

		}

A	treatment	of	map	controls	is	also	outside	of	the	scope	of	this	module,	but	these	style	declarations	give	you	a	sneak	preview.	By
default,	an		ol.control.Attribution		control	is	added	to	all	maps.	This	lets	layer	sources	display	attribution	information	in	the	map
viewport.	The	declarations	above	alter	the	style	of	this	attribution	for	our	map	(notice	the	Copyright	line	at	the	bottom	right	of	the	map).

Attribution	Control	Configuration

By	default	the		ol.control.Attribution		adds	an		i		(information)	button	that	can	be	pressed	to	actually	displays	the	attribution
information.	To	comply	to	OpenStreetMap's	Terms	Of	Use,	and	always	display	the	OpenStreetMap	attribution	information,	the
following	is	used	in	the	options	object	passed	to	the		ol.Map		constructor:

controls:	ol.control.defaults({

				attributionOptions:	{

						collapsible:	false

				}

		})

This	removes	the		i		button,	and	makes	the	attribution	information	always	visible.

Having	mastered	layers	with	publicly	available	cached	tile	sets,	let's	move	on	to	working	with	proprietary	raster	layers.

MoMo	workshop

144Tiled	sources

http://epsg.io/
http://wiki.openstreetmap.org/wiki/Legal_FAQ

Proprietary	Raster	Layers
In	previous	sections,	we	displayed	layers	based	on	a	standards	compliant	WMS	(OGC	Web	Map	Service)	and	a	custom	tile	cache.
Online	mapping	(or	at	least	the	tiled	map	client)	was	largely	popularized	by	the	availability	of	proprietary	map	tile	services.	OpenLayers
provides	layer	types	that	work	with	these	proprietary	services	through	their	APIs.

In	this	section,	we'll	build	on	the	example	developed	in	the	previous	section	by	adding	a	layer	using	tiles	from	Bing.

Bing!

Let's	add	a	Bing	layer.

Tasks

1.	 In	your		map.html		file,	find	where	the	OSM	(OpenStreetMap)	source	is	configured	and	change	it	into	an		ol.source.BingMaps	

	source:	new	ol.source.BingMaps({

				imagerySet:	'Road',

				key:	'<Your	Bing	Maps	Key	Here>'

		})

Note	-	The	Bing	tiles	API	requires	that	you	register	for	an	API	key	to	use	with	your	mapping	application.	The	example	here	uses	an
API	key	that	you	should	not	use	in	production.	To	use	the	Bing	layer	in	production,	register	for	an	API	key	at
https://www.bingmapsportal.com/.

2.	 Save	your	changes	and	reload		map.html		in	your	browser:	http://terrestris.github.io/momo3-ws//map.html	

Complete	Working	Example
Your	revised		map.html		file	should	look	something	like	this:

MoMo	workshop

145Proprietary	tile	providers

https://www.bingmapsportal.com/
http://terrestris.github.io/momo3-ws//map.html

<!doctype	html>

<html	lang="en">

		<head>

				<link	rel="stylesheet"	href="/ol.css"	type="text/css">

				<style>

						#map	{

								height:	256px;

								width:	512px;

						}

						.ol-attribution	a	{

								color:	black;

						}

				</style>

				<script	src="/loader.js"	type="text/javascript"></script>

				<title>OpenLayers	3	example</title>

		</head>

		<body>

				<h1>My	Map</h1>

				<div	id="map"	class="map"></div>

				<script	type="text/javascript">

						var	map	=	new	ol.Map({

								target:	'map',

								layers:	[

										new	ol.layer.Tile({

												source:	new	ol.source.BingMaps({

														imagerySet:	'Road',

														key:	'<Your	Bing	Maps	Key	Here>'

												})

										})

],

								view:	new	ol.View({

										center:	ol.proj.fromLonLat([126.97,	37.56]),

										zoom:	9

								})

						});

				</script>

		</body>

</html>

MoMo	workshop

146Proprietary	tile	providers

Vector	Layers
Vector	Layers	are	represented	by		ol.layer.Vector		and	handle	the	client-side	display	of	vector	data.	Currently	OpenLayers	3	supports
full	vector	rendering	in	the	Canvas	renderer,	but	only	point	geometries	in	the	WebGL	renderer.

Rendering	Features	Client-Side

Let's	go	back	to	the	WMS	example	to	get	a	basic	world	map.	We'll	add	some	feature	data	on	top	of	this	in	a	vector	layer.

<!doctype	html>

<html	lang="en">

		<head>

				<link	rel="stylesheet"	href="/ol.css"	type="text/css">

				<style>

						#map	{

								height:	256px;

								width:	512px;

						}

				</style>

				<title>OpenLayers	3	example</title>

				<script	src="/loader.js"	type="text/javascript"></script>

		</head>

		<body>

				<h1>My	Map</h1>

				<div	id="map"></div>

				<script	type="text/javascript">

						var	map	=	new	ol.Map({

								target:	'map',

								layers:	[

										new	ol.layer.Tile({

												title:	'Global	Imagery',

												source:	new	ol.source.TileWMS({

														url:	'http://demo.opengeo.org/geoserver/wms',

														params:	{LAYERS:	'nasa:bluemarble',	VERSION:	'1.1.1'}

												})

										})

],

								view:	new	ol.View({

										projection:	'EPSG:4326',

										center:	[0,	0],

										zoom:	0,

										maxResolution:	0.703125

								})

						});

				</script>

		</body>

</html>

Tasks

1.	 Open		map.html		in	your	text	editor	and	copy	in	the	contents	of	the	initial	WMS	example.	Save	your	changes	and	confirm	that
things	look	good	in	your	browser:	http://terrestris.github.io/momo3-ws//map.html

2.	 In	your	map	initialization	code	add	another	layer	after	the	Tile	layer	(paste	the	following).	This	adds	a	new	vector	layer	to	your
map	that	requests	a	set	of	features	stored	in	GeoJSON:

MoMo	workshop

147Vector	data

http://terrestris.github.io/momo3-ws//map.html

	new	ol.layer.Vector({

				title:	'Earthquakes',

				source:	new	ol.source.Vector({

						url:	'/data/layers/7day-M2.5.json',

						format:	new	ol.format.GeoJSON()

				}),

				style:	new	ol.style.Style({

						image:	new	ol.style.Circle({

								radius:	3,

								fill:	new	ol.style.Fill({color:	'white'})

						})

				})

		})

A	Closer	Look

Let's	examine	that	vector	layer	creation	to	get	an	idea	of	what	is	going	on.

new	ol.layer.Vector({

		title:	'Earthquakes',

		source:	new	ol.source.Vector({

				url:	'/data/layers/7day-M2.5.json',

				format:	new	ol.format.GeoJSON()

		}),

		style:	new	ol.style.Style({

				image:	new	ol.style.Circle({

						radius:	3,

						fill:	new	ol.style.Fill({color:	'white'})

				})

		})

})

The	layer	is	given	the	title		'Earthquakes'		and	some	custom	options.	In	the	options	object,	we've	included	a		source		of	type
	ol.source.Vector		which	points	to	a	url.	We've	given	the	source	a		format		that	will	be	used	for	parsing	the	data.

Note	-	In	the	case	where	you	want	to	style	the	features	based	on	an	attribute,	you	would	use	a	style	function	instead	of	an
	ol.style.Style		for	the		style		config	option	of		ol.layer.Vector	.

Bonus	Tasks

1.	 The	white	circles	on	the	map	represent		ol.Feature		objects	on	your		ol.layer.Vector		layer.	Each	of	these	features	has	attribute
data	with		title		and		summary		properties.	Register	a		'singleclick'		listener	on	your	map	that	calls
	forEachFeatureAtPixel		on	the	map,	and	displays	earthquake	information	below	the	map	viewport.

2.	 The	data	for	the	vector	layer	comes	from	an	earthquake	feed	published	by	the	USGS
(http://earthquake.usgs.gov/earthquakes/catalogs/).	See	if	you	can	find	additional	data	with	spatial	information	in	a	format

MoMo	workshop

148Vector	data

http://earthquake.usgs.gov/earthquakes/catalogs/

supported	by	OpenLayers	3.	If	you	save	another	document	representing	spatial	data	in	your		data		directory,	you	should	be	able	to
view	it	in	a	vector	layer	on	your	map.

Solutions

As	a	solution	to	the	first	bonus	task	you	can	add	an		info		div	below	the	map:

<div	id="info"></div>

and	add	the	following	JavaScript	code	to	display	the	title	of	the	clicked	feature:

map.on('singleclick',	function(e)	{

		var	feature	=	map.forEachFeatureAtPixel(e.pixel,	function(feature)	{

				return	feature;

		});

		var	infoElement	=	document.getElementById('info');

		infoElement.innerHTML	=	feature	?	feature.get('title')	:	'';

});

MoMo	workshop

149Vector	data

Image	Vector
In	the	previous	example	using	an		ol.layer.Vector		you	can	see	that	the	features	are	re-rendered	continuously	during	animated
zooming	(the	size	of	the	point	symbolizers	remains	fixed).	With	a	vector	layer,	OpenLayers	will	re-render	the	source	data	with	each
animation	frame.	This	provides	consistent	rendering	of	line	strokes,	point	symbolizers,	and	labels	with	changes	in	the	view	resolution.

An	alternative	rendering	strategy	is	to	avoid	re-rendering	data	during	view	transitions	and	instead	reposition	and	scale	the	rendered
output	from	the	previous	view	state.	This	can	be	accomplished	by	using	an		ol.layer.Image		with	an		ol.source.ImageVector	.	With
this	combination,	"snapshots"	of	your	data	are	rendered	when	the	view	is	not	animating,	and	these	snapshots	are	reused	during	view
transitions.

The	example	below	uses	an		ol.layer.Image		with	an		ol.source.ImageVector	.	Though	this	example	only	renders	a	small	quantity	of
data,	this	combination	would	be	appropriate	for	applications	that	render	large	quantities	of	relatively	static	data.

	ol.source.ImageVector	

Let's	go	back	to	the	vector	layer	example	to	get	earthquake	data	on	top	of	a	world	map.

MoMo	workshop

150Image	vector	source

<!doctype	html>

<html	lang="en">

		<head>

				<link	rel="stylesheet"	href="/ol.css"	type="text/css">

				<style>

						#map	{

								height:	256px;

								width:	512px;

						}

				</style>

				<title>OpenLayers	3	example</title>

				<script	src="/loader.js"	type="text/javascript"></script>

		</head>

		<body>

				<h1>My	Map</h1>

				<div	id="map"></div>

				<script	type="text/javascript">

						var	map	=	new	ol.Map({

								target:	'map',

								layers:	[

										new	ol.layer.Tile({

												title:	'Global	Imagery',

												source:	new	ol.source.TileWMS({

														url:	'http://demo.opengeo.org/geoserver/wms',

														params:	{LAYERS:	'nasa:bluemarble',	VERSION:	'1.1.1'}

												})

										}),

										new	ol.layer.Vector({

												title:	'Earthquakes',

												source:	new	ol.source.Vector({

														url:	'/data/layers/7day-M2.5.json',

														format:	new	ol.format.GeoJSON()

												}),

												style:	new	ol.style.Style({

														image:	new	ol.style.Circle({

																radius:	3,

																fill:	new	ol.style.Fill({color:	'white'})

														})

												})

										})

],

								view:	new	ol.View({

										projection:	'EPSG:4326',

										center:	[0,	0],

										zoom:	0,

										maxResolution:	0.703125

								})

						});

				</script>

		</body>

</html>

Tasks

1.	 Open		map.html		in	your	text	editor	and	copy	in	the	contents	of	the	vector	example	from	above.	Save	your	changes	and	confirm
that	things	look	good	in	your	browser:	http://terrestris.github.io/momo3-ws//map.html

2.	 Change	the	vector	layer	into:

MoMo	workshop

151Image	vector	source

http://terrestris.github.io/momo3-ws//map.html

	new	ol.layer.Image({

				title:	'Earthquakes',

				source:	new	ol.source.ImageVector({

						source:	new	ol.source.Vector({

								url:	'/data/layers/7day-M2.5.json',

								format:	new	ol.format.GeoJSON()

						}),

						style:	new	ol.style.Style({

								image:	new	ol.style.Circle({

								radius:	3,

										fill:	new	ol.style.Fill({color:	'white'})

								})

						})

				})

		})

3.	 Reload	http://terrestris.github.io/momo3-ws//map.html	in	the	browser	Note	-	You	will	see	the	same	vector	data	but	depicted	as	an
image.	This	will	still	enable	things	like	feature	detection,	but	the	vector	data	will	be	less	sharp.	So	this	is	essentially	a	trade-off
between	performance	and	quality.

A	Closer	Look

Let's	examine	the	layer	creation	to	get	an	idea	of	what	is	going	on.

new	ol.layer.Image({

				title:	'Earthquakes',

				source:	new	ol.source.ImageVector({

						source:	new	ol.source.Vector({

								url:	'/data/layers/7day-M2.5.json',

								format:	new	ol.format.GeoJSON()

						}),

						style:	new	ol.style.Style({

								image:	new	ol.style.Circle({

								radius:	3,

										fill:	new	ol.style.Fill({color:	'white'})

								})

						})

				})

		})

We	are	using	an		ol.layer.Image		instead	of	an		ol.layer.Vector	.	However,	we	can	still	use	vector	data	here	through
	ol.source.ImageVector		that	connects	to	our	original		ol.source.Vector		vector	source.	The	style	is	provided	as	config	of
	ol.source.ImageVector		and	not	on	the	layer.

Bonus	Tasks

1.	 Verify	that	feature	detection	still	works	by	registering	a		'singleclick'		listener	on	your	map	that	calls
	forEachFeatureAtPixel		on	the	map,	and	displays	earthquake	information	below	the	map	viewport.

MoMo	workshop

152Image	vector	source

http://terrestris.github.io/momo3-ws//map.html

Controls	and	interactions
Scale	line	control
Select	interaction
Draw	interaction
Modify	interaction

MoMo	workshop

153Controls

Displaying	a	Scale	Line
Another	typical	widget	to	display	on	maps	is	a	scale	bar.	OpenLayers	3	provides	an		ol.control.ScaleLine		for	just	this.

Creating	a	ScaleLine	Control

Tasks

1.	 Open	the		map.html		in	your	text	editor.
2.	 Somewhere	in	the	map	config,	add	the	following	code	to	create	a	new	scale	line	control	for	your	map:

	controls:	ol.control.defaults().extend([

			new	ol.control.ScaleLine()

]),

3.	 Save	your	changes	and	open		map.html		in	your	browser:	http://terrestris.github.io/momo3-ws//map.html

Moving	the	ScaleLine	Control
You	may	find	the	scale	bar	a	bit	hard	to	read	over	the	imagery.	There	are	a	few	approaches	to	take	in	order	to	improve	scale	visibility.	If
you	want	to	keep	the	control	inside	the	map	viewport,	you	can	add	some	style	declarations	within	the	CSS	of	your	document.	To	test
this	out,	you	can	include	a	background	color	and	padding	to	the	scale	bar	with	something	like	the	following:

.ol-scale-line	{

				background:	black;

				padding:	5px;

		}

However,	for	the	sake	of	this	exercise,	let's	say	you	think	the	map	viewport	is	getting	unbearably	crowded.	To	avoid	such	over-
crowding,	you	can	display	the	scale	in	a	different	location.	To	accomplish	this,	we	need	to	first	create	an	additional	element	in	our
markup	and	then	tell	the	scale	control	to	render	itself	within	this	new	element.

Tasks

1.	 Create	a	new	block	level	element	in	the		<body>		of	your	page.	To	make	this	element	easy	to	refer	to,	we'll	give	it	an		id	
attribute.	Insert	the	following	markup	somewhere	in	the		<body>		of	your		map.html		page.	(Placing	the	scale	element	right
after	the	map	viewport	element		<div	id="map"></div>		makes	sense.):

MoMo	workshop

154Scale	line	control

http://terrestris.github.io/momo3-ws//map.html

	<div	id="scale-line"	class="scale-line"></div>

2.	 Now	modify	the	code	creating	the	scale	control	so	that	it	refers	to	the		scale-line		element:

	controls:	ol.control.defaults().extend([

			new	ol.control.ScaleLine({className:	'ol-scale-line',	target:	document.getElementById('scale-line')})

]),

3.	 Save	your	changes	and	open		map.html		in	your	browser:	http://terrestris.github.io/momo3-ws//map.html
4.	 "Fix"	the	position	of	the	control	with,	for	example,	the	following	CSS	rules:

.scale-line	{

		position:	absolute;

		top:	350px;

}

.ol-scale-line	{

		position:	relative;

		bottom:	0px;

		left:	0px;

}

5.	 Now	save	your	changes	and	view		map.html		again	in	your	browser:	http://terrestris.github.io/momo3-ws//map.html	

Note	-	To	create	a	custom	control	you	can	inherit	(by	using		ol.inherits)	from		ol.control.Control	.	To	see	an	example	of	this
check	out:	http://openlayers.org/en/master/examples/custom-controls.html.

MoMo	workshop

155Scale	line	control

http://terrestris.github.io/momo3-ws//map.html
http://terrestris.github.io/momo3-ws//map.html
http://openlayers.org/en/master/examples/custom-controls.html

Selecting	Features

As	we've	seen	in	the	layers	module,	we	can	pull	features	as	vectors	and	draw	them	on	top	of	a	base	map.	One	of	the	advantages	of
serving	vector	data	is	that	users	can	interact	with	the	data.	In	this	example,	we	create	a	vector	layer	where	users	can	select	and	view
feature	information.

The	previous	example	demonstrated	the	use	of	an		ol.control.Control		on	the	map.	Controls	have	a	visual	representation	on	the	map
or	add	DOM	elements	to	the	document.	An		ol.interaction.Interaction		is	responsible	for	handling	user	interaction,	but	typically	has
no	visual	representation.	This	example	demonstrates	the	use	of	the		ol.interaction.Select		for	interacting	with	features	from	vector
layers.

Create	a	Vector	Layer	and	a	Select	Interaction

Tasks

1.	 Let's	start	with	the	vector	layer	example	from	a	previous	section.	Open		map.html		in	your	text	editor	and	make	sure	it	looks
something	like	the	following:

MoMo	workshop

156Select	interaction

	<!doctype	html>

	<html	lang="en">

		<head>

				<link	rel="stylesheet"	href="/ol.css"	type="text/css">

				<style>

				#map	{

						height:	256px;

						width:	512px;

				}

				</style>

				<script	src="/loader.js"	type="text/javascript"></script>

				<title>OpenLayers	3	example</title>

		</head>

		<body>

				<h1>My	Map</h1>

				<div	id="map"></div>

				<script	type="text/javascript">

						var	map	=	new	ol.Map({

								interactions:	ol.interaction.defaults().extend([

										new	ol.interaction.Select({

												style:	new	ol.style.Style({

														image:	new	ol.style.Circle({

																radius:	5,

																fill:	new	ol.style.Fill({

																		color:	'#FF0000'

																}),

																stroke:	new	ol.style.Stroke({

																		color:	'#000000'

																})

														})

												})

										})

]),

								target:	'map',

								layers:	[

										new	ol.layer.Tile({

												title:	'Global	Imagery',

												source:	new	ol.source.TileWMS({

														url:	'http://demo.opengeo.org/geoserver/wms',

														params:	{LAYERS:	'nasa:bluemarble',	VERSION:	'1.1.1'}

												})

										}),

										new	ol.layer.Vector({

												title:	'Earthquakes',

												source:	new	ol.source.Vector({

														url:	'/data/layers/7day-M2.5.json',

														format:	new	ol.format.GeoJSON()

												}),

												style:	new	ol.style.Style({

														image:	new	ol.style.Circle({

																radius:	5,

																fill:	new	ol.style.Fill({

																		color:	'#0000FF'

																}),

																stroke:	new	ol.style.Stroke({

																		color:	'#000000'

																})

														})

												})

										})

],

								view:	new	ol.View({

										projection:	'EPSG:4326',

										center:	[0,	0],

										zoom:	1

								})

						});

				</script>

		</body>

	</html>

MoMo	workshop

157Select	interaction

2.	 Save	your	changes	to		map.html		and	open	the	page	in	your	browser:	http://terrestris.github.io/momo3-ws//map.html.	To	see
feature	selection	in	action,	use	the	mouse-click	to	select	an	earthquake:	

MoMo	workshop

158Select	interaction

http://terrestris.github.io/momo3-ws//map.html

Drawing	Features
New	features	can	be	drawn	by	using	an		ol.interaction.Draw	.	A	draw	interaction	is	constructed	with	a	vector	source	and	a	geometry
type.

Create	a	Vector	Layer	and	a	Draw	Interaction

Tasks

1.	 Let's	start	with	the	example	below.	Open		map.html		in	your	text	editor	and	make	sure	it	looks	something	like	the	following:

MoMo	workshop

159Draw	interaction

	<!doctype	html>

	<html	lang="en">

			<head>

					<link	rel="stylesheet"	href="/ol.css"	type="text/css">

					<style>

					#map	{

							height:	256px;

							width:	512px;

					}

					</style>

					<script	src="/loader.js"	type="text/javascript"></script>

					<title>OpenLayers	3	example</title>

			</head>

			<body>

					<h1>My	Map</h1>

					<div	id="map"></div>

					<script	type="text/javascript">

							var	source	=	new	ol.source.Vector({

									url:	'/data/layers/7day-M2.5.json',

									format:	new	ol.format.GeoJSON()

							});

							var	draw	=	new	ol.interaction.Draw({

									source:	source,

									type:	'Point'

							});

							var	map	=	new	ol.Map({

									interactions:	ol.interaction.defaults().extend([draw]),

									target:	'map',

									layers:	[

											new	ol.layer.Tile({

													title:	'Global	Imagery',

													source:	new	ol.source.TileWMS({

															url:	'http://demo.opengeo.org/geoserver/wms',

															params:	{LAYERS:	'nasa:bluemarble',	VERSION:	'1.1.1'}

													})

											}),

											new	ol.layer.Vector({

													title:	'Earthquakes',

													source:	source,

													style:	new	ol.style.Style({

															image:	new	ol.style.Circle({

																	radius:	5,

																	fill:	new	ol.style.Fill({

																			color:	'#0000FF'

																	}),

																	stroke:	new	ol.style.Stroke({

																			color:	'#000000'

																	})

															})

													})

											})

],

									view:	new	ol.View({

											projection:	'EPSG:4326',

											center:	[0,	0],

											zoom:	1

									})

							});

					</script>

			</body>

	</html>

2.	 Save	your	changes	to		map.html		and	open	the	page	in	your	browser:	http://terrestris.github.io/momo3-ws//map.html.	To	see
drawing	of	point	geometries	in	action,	click	in	the	map	to	add	a	new	feature:	

MoMo	workshop

160Draw	interaction

http://terrestris.github.io/momo3-ws//map.html

Bonus	Tasks

1.	 Create	a	listener	which	gets	the	new	feature's	X	and	Y	after	it	is	drawn.

Solutions

Here	is	a	solution	for	the	first	bonus	task.	In	it	we	register	an	event	listener	for	the		drawend		event	of	the		ol.interaction.Draw	.	This
method	logs	the	feature's	X	and	Y	to	the	developer	console:

draw.on('drawend',	function(evt){

		var	feature	=	evt.feature;

		var	p	=	feature.getGeometry();

		console.log(p.getCoordinates());

});

MoMo	workshop

161Draw	interaction

Modifying	Features
Modifying	features	works	by	using	an		ol.interaction.Select		in	combination	with	an		ol.interaction.Modify	.	They	share	a
common	collection	(ol.Collection)	of	features.	Features	selected	with	the		ol.interaction.Select		become	candidates	for
modifications	with	the		ol.interaction.Modify	.

Create	a	Vector	Layer	and	a	Modify	Interaction

Tasks

1.	 Let's	start	with	the	working	example.	Open		map.html		in	your	text	editor	and	make	sure	it	looks	something	like	the	following:

	<!doctype	html>

	<html	lang="en">

		<head>

				<link	rel="stylesheet"	href="/ol.css"	type="text/css">

				<style>

				#map	{

						height:	256px;

						width:	512px;

				}

				</style>

				<script	src="/loader.js"	type="text/javascript"></script>

				<title>OpenLayers	3	example</title>

		</head>

		<body>

				<h1>My	Map</h1>

				<div	id="map"></div>

				<script	type="text/javascript">

						var	source	=	new	ol.source.Vector({

								url:	'/data/layers/7day-M2.5.json',

								format:	new	ol.format.GeoJSON()

						});

						var	style	=	new	ol.style.Style({

								image:	new	ol.style.Circle({

										radius:	7,

												fill:	new	ol.style.Fill({

												color:	[0,	153,	255,	1]

										}),

										stroke:	new	ol.style.Stroke({

												color:	[255,	255,	255,	0.75],

												width:	1.5

										})

								}),

								zIndex:	100000

						});

						var	select	=	new	ol.interaction.Select({style:	style});

						var	modify	=	new	ol.interaction.Modify({

								features:	select.getFeatures()

						});

						var	map	=	new	ol.Map({

								interactions:	ol.interaction.defaults().extend([select,	modify]),

								target:	'map',

								layers:	[

										new	ol.layer.Tile({

												title:	'Global	Imagery',

												source:	new	ol.source.TileWMS({

														url:	'http://demo.opengeo.org/geoserver/wms',

														params:	{LAYERS:	'nasa:bluemarble',	VERSION:	'1.1.1'}

												})

										}),

										new	ol.layer.Vector({

												title:	'Earthquakes',

												source:	source,

												style:	new	ol.style.Style({

MoMo	workshop

162Modify	interaction

														image:	new	ol.style.Circle({

																radius:	5,

																fill:	new	ol.style.Fill({

																		color:	'#0000FF'

																}),

																stroke:	new	ol.style.Stroke({

																		color:	'#000000'

																})

														})

												})

										})

],

								view:	new	ol.View({

										projection:	'EPSG:4326',

										center:	[0,	0],

										zoom:	1

								})

						});

				</script>

		</body>

	</html>

2.	 Save	your	changes	to		map.html		and	open	the	page	in	your	browser:	http://terrestris.github.io/momo3-ws//map.html.	To	see
feature	modification	in	action,	use	the	mouse-click	to	select	an	earth	quake	and	then	drag	to	move	the	point.

A	Closer	Look

Let's	examine	how	modifying	features	works.

var	style	=	new	ol.style.Style({

				image:	new	ol.style.Circle({

						radius:	7,

								fill:	new	ol.style.Fill({

								color:	[0,	153,	255,	1]

						}),

						stroke:	new	ol.style.Stroke({

								color:	[255,	255,	255,	0.75],

								width:	1.5

						})

				}),

				zIndex:	100000

		});

		var	select	=	new	ol.interaction.Select({style:	style});

		var	modify	=	new	ol.interaction.Modify({

				features:	select.getFeatures()

		});

We	create	2	interactions,	an		ol.interaction.Select		to	select	the	features	before	modifying	them,	and	an		ol.interaction.Modify		to
actually	modify	the	geometries.	They	share	the	same		ol.Collection		of	features.	Features	selected	using		ol.interaction.Modify	
become	candidates	for	modification	with	the		ol.interaction.Modify	.	As	previously,	the		ol.interaction.Select		is	configured	with
a	style	object,	which	effectively	defines	the	style	used	for	drawing	selected	features.	When	the	user	clicks	in	the	map	again,	the	feature
will	be	drawn	using	the	layer's	style.

MoMo	workshop

163Modify	interaction

http://terrestris.github.io/momo3-ws//map.html

Vector	Topics
An	aside	on	formats
Styling	concepts
Custom	feature	styles

MoMo	workshop

164Vector	Topics

Working	with	Vector	Formats
The	base		ol.layer.Vector		constructor	provides	a	fairly	flexible	layer	type.	By	default,	when	you	create	a	new	vector	layer,	no
assumptions	are	made	about	where	the	features	for	the	layer	will	come	from,	since	this	is	the	domain	of		ol.source.Vector	.	Before
getting	into	styling	vector	features,	this	section	introduces	the	basics	of	vector	formats.

	ol.format	

The		ol.format		classes	in	OpenLayers	3	are	responsible	for	parsing	data	from	the	server	representing	vector	features.	The	format	turns
raw	feature	data	into		ol.Feature		objects.

Consider	the	two	blocks	of	data	below.	Both	represent	the	same		ol.Feature		object	(a	point	in	Barcelona,	Spain).	The	first	is	serialized
as	GeoJSON	(using	the		ol.format.GeoJSON		parser).	The	second	is	serialized	as	KML	(OGC	Keyhole	Markup	Language)	(using	the
	ol.format.KML		parser).

GeoJSON	Example

{

		"type":	"Feature",

		"id":	"OpenLayers.Feature.Vector_107",

		"properties":	{},

		"geometry":	{

				"type":	"Point",

				"coordinates":	[-104.98,	39.76]

		}

}

KML	Example

<?xml	version="1.0"	encoding="utf-8"?>

<kml	xmlns="http://earth.google.com/kml/2.2">

		<Placemark>

				<Point>

						<coordinates>-104.98,39.76</coordinates>

				</Point>

		</Placemark>

</kml>

MoMo	workshop

165Formats

http://geojson.org

Understanding	Style
When	styling	HTML	elements,	you	might	use	CSS	like	the	following:

.someClass	{

				background-color:	blue;

				border-width:	1px;

				border-color:	olive;

		}

The		.someClass		text	is	a	selector	(in	this	case	it	selects	all	elements	that	include	the	class	name		'someClass')	and	the	block
that	follows	is	a	group	of	named	properties	and	values,	otherwise	known	as	style	declarations.

Layer	style
A	vector	layer	can	have	styles.	More	specifically,	a	vector	layer	can	be	configured	with	an		ol.style.Style		object,	an	array	of
	ol.style.Style		objects,	or	a	function	that	takes	an		ol.Feature		instance	and	a	resolution	and	returns	an	array	of		ol.style.Style	
objects.

Here's	an	example	of	a	vector	layer	configured	with	a	static	style:

var	layer	=	new	ol.layer.Vector({

				source:	new	ol.source.Vector(),

				style:	new	ol.style.Style({

						//	...

				})

		});

And	here's	an	example	of	a	vector	layer	configured	with	a	style	function	that	applies	a	style	to	all	features	that	have	an	attribute	named
	class		with	a	value	of		'someClass'	:

var	layer	=	new	ol.layer.Vector({

				source:	new	ol.source.Vector(),

				style:	function(feature,	resolution)	{

						if	(feature.get('class')	===	'someClass')	{

								//	create	styles...

								return	styles;

						}

				},

		});

Symbolizers
The	equivalent	of	a	declaration	block	in	CSS	is	a		symbolizer		in	OpenLayers	3	(these	are	typically	instances	of		ol.style		classes).	To
paint	polygon	features	with	a	blue	background	and	a	1	pixel	wide	olive	stroke,	you	would	use	two	symbolizers	like	the	following:

new	ol.style.Style({

				fill:	new	ol.style.Fill({

						color:	'blue'

				}),

				stroke:	new	ol.style.Stroke({

						color:	'olive',

						width:	1

				})

		});

MoMo	workshop

166Styling	concepts

Depending	on	the	geometry	type,	different	symbolizers	can	be	applied.	Lines	work	like	polygons,	but	they	cannot	have	a	fill.	Points	can
be	styled	with		ol.style.Circle		or		ol.style.Icon	.	The	former	is	used	to	render	circle	shapes,	and	the	latter	uses	graphics	from	file
(e.g.	png	images).	Here	is	an	example	for	a	style	with	a	circle:

new	ol.style.Circle({

				radius:	20,

				fill:	new	ol.style.Fill({

						color:	'#ff9900',

						opacity:	0.6

				}),

				stroke:	new	ol.style.Stroke({

						color:	'#ffcc00',

						opacity:	0.4

				})

		});

	ol.style.Style	

An		ol.style.Style		object	has	4	keys:		fill	,		image	,		stroke		and		text	.	It	also	has	an	optional		zIndex		property.	The	style
function	will	return	an	array	of		ol.style.Style		objects.

If	you	want	all	features	to	be	colored	red	except	for	those	that	have	a		class		attribute	with	the	value	of		"someClass"		(and
you	want	those	features	colored	blue	with	an	1px	wide	olive	stroke),	you	would	create	a	style	function	that	looked	like	the	following	(by
the	way,	it	is	important	to	create	objects	outside	of	the	style	function	so	they	can	be	reused,	but	for	simplicity	reasons	the	objects	are
created	inline	in	the	example	below):

var	primaryStyles	=	[

				new	ol.style.Style({

						fill:	new	ol.style.Fill({

								color:	'blue'

						}),

						stroke:	new	ol.style.Stroke({

								color:	'olive',

								width:	1

						})

				})];

				var	otherStyle	=	[new	ol.style.Style({

						fill:	new	ol.style.Fill({

								color:	'red'

						})

				})				

];

		var	otherStyles	=	[

				//	define	other	styles	here

]

		layer.setStyle(function(feature,	resolution)	{

				if	(feature.get('class')	===	'someClass')	{

						return	primaryStyles;

				}	else	{

						return	otherStyles;

				}				

		});

Note	-	It	is	important	to	create	the	style	arrays	outside	of	the	actual	style	function.	The	style	function	is	called	many	times	during
rendering,	and	you'll	get	smoother	animation	if	your	style	functions	don't	create	a	lot	of	garbage.

A	feature	also	has	a	style	config	option	that	can	take	a	function	having	only	resolution	as	argument.	This	makes	it	possible	to	style
individual	features	(based	on	resolution).

Pseudo-classes

MoMo	workshop

167Styling	concepts

CSS	allows	for	pseudo-classes	on	selectors.	These	basically	limit	the	application	of	style	declarations	based	on	contexts	that	are	not
easily	represented	in	the	selector,	such	as	mouse	position,	neighboring	elements,	or	browser	history.	In	OpenLayers	3,	a	somewhat
similar	concept	is	having	a	style	config	option	on	an		ol.interaction.Select	.

An	example	is:

var	select	=	new	ol.interaction.Select({

				style:	new	ol.style.Style({

						fill:	new	ol.style.Fill({

								color:	'rgba(255,255,255,0.5)'

						})

				})

		});

With	the	basics	of	styling	under	your	belt,	it's	time	to	move	on	to	styling	vector	layers.

MoMo	workshop

168Styling	concepts

Styling	Vector	Layers
1.	 We'll	start	with	a	working	example	that	displays	building	footprints	in	a	vector	layer.	Open	your	text	editor	and	save	the	following

as		map.html		in	the	root	of	your	workshop	directory:

	<!doctype	html>

	<html	lang="en">

	<head>

			<link	rel="stylesheet"	href="/ol.css"	type="text/css">

			<style>

			#map	{

					height:	256px;

					width:	512px;

			}

			</style>

			<title>OpenLayers	3	example</title>

			<script	src="/loader.js"	type="text/javascript"></script>

	</head>

	<body>

			<h1>My	Map</h1>

			<div	id="map"></div>

			<script	type="text/javascript">

					var	map	=	new	ol.Map({

							target:	'map',

							layers:	[

									new	ol.layer.Tile({

											source:	new	ol.source.OSM()

									}),

									new	ol.layer.Vector({

											title:	'Buildings',

											source:	new	ol.source.Vector({

													url:	'/data/layers/buildings.kml',

													format:	new	ol.format.KML({

															extractStyles:	false

													})

											}),

											style:	new	ol.style.Style({

													stroke:	new	ol.style.Stroke({color:	'red',	width:	2})

											})

									})

],

							view:	new	ol.View({

									center:	ol.proj.fromLonLat([-122.79264450073244,	42.30975194250527]),

									zoom:	16

							})

					});

			</script>

	</body>

	</html>

2.	 Open	this		map.html		file	in	your	browser	to	see	buildings	with	a	red	outline:	http://terrestris.github.io/momo3-ws//map.html
3.	 With	a	basic	understanding	of	styling	in	OpenLayers,	we	can	create	a	style	function	that	displays	buildings	in	different	colors	based

on	the	size	of	their	footprint.	In	your	map	initialization	code,	add	the	following	two	styles	arrays	and	replace	the		style		option	for
the		'Buildings'		layer	with	the	style	function	below:

MoMo	workshop

169Custom	styles

http://terrestris.github.io/momo3-ws//map.html

var	defaultStyles	=	[

			new	ol.style.Style({

					fill:	new	ol.style.Fill({color:	'navy'}),

					stroke:	new	ol.style.Stroke({color:	'black',	width:	1})

			})

];

	var	smallStyles	=	[

			new	ol.style.Style({

					fill:	new	ol.style.Fill({color:	'olive'}),

					stroke:	new	ol.style.Stroke({color:	'black',	width:	1})

			})

];

	function	style(feature,	resolution)	{

			if	(feature.get('shape_area')	<	3000)	{

					return	smallStyles;

			}	else	{

					return	defaultStyles;

			}						

	}

4.	 Save	your	changes	and	open		map.html		in	your	browser:	http://terrestris.github.io/momo3-ws//map.html	

5.	 Now	as	a	final	step,	let's	add	a	label	to	the	buildings.	For	simplicity	we're	only	using	a	label	and	a	black	outline	as	the	style.

style:	(function()	{

			var	stroke	=	new	ol.style.Stroke({

					color:	'black'

			});

			var	textStroke	=	new	ol.style.Stroke({

					color:	'#fff',

					width:	3

			});

			var	textFill	=	new	ol.style.Fill({

					color:	'#000'

			});

			return	function(feature,	resolution)	{

					return	[new	ol.style.Style({

							stroke:	stroke,

							text:	new	ol.style.Text({

									font:	'12px	Calibri,sans-serif',

									text:	feature.get('key'),

									fill:	textFill,

									stroke:	textStroke

							})

					})];

			};

	})()

6.	 Save	your	changes	and	open		map.html		in	your	browser:	http://terrestris.github.io/momo3-ws//map.html	

MoMo	workshop

170Custom	styles

http://terrestris.github.io/momo3-ws//map.html
http://terrestris.github.io/momo3-ws//map.html

MoMo	workshop

171Custom	styles

Custom	Builds
Concepts
Create	a	custom	build

MoMo	workshop

172Custom	Builds

Understanding	custom	builds
OpenLayers	3	is	a	big	library	providing	a	lot	of	functionality.	So	it	is	unlikely	that	an	application	will	need	and	use	all	the	functionality
OpenLayers	3	provides.	Custom	builds	(a.k.a.	application-specific	builds)	are	OpenLayers	3	builds	with	just	the	functionality	your
application	needs.	Custom	builds	are	often	much	smaller	that	the	full	build,	so	creating	custom	builds	is	often	a	very	good	idea.

Requirements

OpenLayers	3	builds	are	created	by	using	the	Closure	Compiler.	The	goal	of	the	Closure	Compiler	is	to	compile	JavaScript	to	better
JavaScript,	that	takes	less	time	to	downoad	and	run	faster.

The	Closure	Compiler	is	a	Java	program,	so	running	the	Compiler	requires	a	Java	Virtual	Machine.	So	before	jumping	to	the	next
section,	and	creating	a	custom	build,	make	sure	Java	is	installed	on	your	machine.

You	just	need	the	Java	Runtime	Environment,	which	you	can	download	from	the	Oracle	Java	site.	For	example,	for	Windows,	you
would	download	and	install		jre-8u60-windows-i586.exe	.

Build	configuration	file
Creating	a	custom	build	requires	writing	a	build	configuration	file.	The	format	of	build	configuration	files	is	JSON.	Here	is	a	simple
example	of	a	build	configuration	file:

MoMo	workshop

173Concepts

https://developers.google.com/closure/compiler/
http://www.oracle.com/technetwork/java/javase/downloads/index.html

{

		"exports":	[

				"ol.Map",

				"ol.View",

				"ol.layer.Tile",

				"ol.source.OSM"

],

		"jvm":	[],

		"umd":	true,

		"compile":	{

				"externs":	[

						"externs/bingmaps.js",

						"externs/closure-compiler.js",

						"externs/esrijson.js",

						"externs/geojson.js",

						"externs/oli.js",

						"externs/olx.js",

						"externs/proj4js.js",

						"externs/tilejson.js",

						"externs/topojson.js"

],

				"define":	[

						"goog.array.ASSUME_NATIVE_FUNCTIONS=true",

						"goog.dom.ASSUME_STANDARDS_MODE=true",

						"goog.json.USE_NATIVE_JSON=true"

],

				"jscomp_error":	[

						"*"

],

				"jscomp_off":	[

						"useOfGoogBase",

						"unnecessaryCasts",

						"lintChecks"

],

				"extra_annotation_name":	[

						"api",	"observable"

],

				"compilation_level":	"ADVANCED",

				"warning_level":	"VERBOSE",

				"use_types_for_optimization":	true,

				"manage_closure_dependencies":	true

		}

}

The	most	relevant	part	of	this	configuration	object	is	the		exports		array.	This	array	declares	the	functions/constructors	you	use	in	your
JavaScript	code.	For	example,	the	above	configuration	file	is	what	you'd	use	for	the	following	JavaScript	code:

var	map	=	new	ol.Map({

		target:	'map',

		layers:	[

				new	ol.layer.Tile({

						source:	new	ol.source.OSM()

				})

],

		view:	new	ol.View({

				center:	[0,	0],

				zoom:	4

		})

});

MoMo	workshop

174Concepts

Creating	custom	builds
In	this	section	we're	going	to	create	a	custom	build	for	the	map	you	created	at	the	last	chapter.

1.	 Start	with	the		map.html		file	you	created	previously:

MoMo	workshop

175Create	custom	builds

	<!doctype	html>

		<html	lang="en">

		<head>

				<link	rel="stylesheet"	href="/ol.css"	type="text/css">

				<style>

				#map	{

						height:	256px;

						width:	512px;

				}

				</style>

				<title>OpenLayers	3	example</title>

				<script	src="/loader.js"	type="text/javascript"></script>

		</head>

		<body>

				<h1>My	Map</h1>

				<div	id="map"></div>

				<script	type="text/javascript">

						var	style	=	(function()	{

								var	stroke	=	new	ol.style.Stroke({

										color:	'black'

								});

								var	textStroke	=	new	ol.style.Stroke({

										color:	'#fff',

										width:	3

								});

								var	textFill	=	new	ol.style.Fill({

										color:	'#000'

								});

								return	function(feature,	resolution)	{

										return	[new	ol.style.Style({

												stroke:	stroke,

												text:	new	ol.style.Text({

														font:	'12px	Calibri,sans-serif',

														text:	feature.get('key'),

														fill:	textFill,

														stroke:	textStroke

												})

										})];

								};

						})();

						var	map	=	new	ol.Map({

								target:	'map',

								layers:	[

										new	ol.layer.Tile({

												source:	new	ol.source.OSM()

										}),

										new	ol.layer.Vector({

												title:	'Buildings',

												source:	new	ol.source.Vector({

														url:	'/data/layers/buildings.kml',

														format:	new	ol.format.KML({

																extractStyles:	false

														})

												}),

												style:	style

										})

],

								view:	new	ol.View({

										center:	ol.proj.fromLonLat([-122.79264450073244,	42.30975194250527]),

										zoom:	16

								})

						});

				</script>

		</body>

		</html>

2.	 Create	a	build	configuration	file	for	that	map:

MoMo	workshop

176Create	custom	builds

{

			"exports":	[

							"ol.Map",

							"ol.View",

							"ol.format.KML",

							"ol.layer.Tile",

							"ol.layer.Vector",

							"ol.proj.fromLonLat",

							"ol.source.OSM",

							"ol.source.Vector",

							"ol.style.Fill",

							"ol.style.Stroke",

							"ol.style.Style",

							"ol.style.Text"

],

			"jvm":	[],

			"umd":	true,

			"compile":	{

					"externs":	[

							"externs/bingmaps.js",

							"externs/closure-compiler.js",

							"externs/esrijson.js",

							"externs/geojson.js",

							"externs/oli.js",

							"externs/olx.js",

							"externs/proj4js.js",

							"externs/tilejson.js",

							"externs/topojson.js"

],

					"define":	[

							"goog.array.ASSUME_NATIVE_FUNCTIONS=true",

							"goog.dom.ASSUME_STANDARDS_MODE=true",

							"goog.json.USE_NATIVE_JSON=true",

							"ol.ENABLE_DOM=false",

							"ol.ENABLE_WEBGL=false",

							"ol.ENABLE_PROJ4JS=false",

							"ol.ENABLE_IMAGE=false",

							"goog.DEBUG=false"

],

					"jscomp_error":	[

							"*"

],

					"jscomp_off":	[

							"useOfGoogBase",

							"unnecessaryCasts",

							"lintChecks"

],

					"extra_annotation_name":	[

							"api",	"observable"

],

					"compilation_level":	"ADVANCED",

					"warning_level":	"VERBOSE",

					"use_types_for_optimization":	true,

					"manage_closure_dependencies":	true

			}

	}

3.	 Create	the	custom	build	using		OpenLayers	's		build.js		Node	script:

$	node	node_modules/openlayers/tasks/build.js	ol-custom.json	ol-custom.js

This	will	generate	the		ol-custom.js		custom	build	at	the	root	of	the	the	project.

4.	 Now	change		map.html		to	use	the	custom	build	(ol-custom.js)	rather	than	the	development	loader.

So	change

MoMo	workshop

177Create	custom	builds

<script	src="/loader.js"	type="text/javascript"></script>

to

<script	src="/ol-custom.js"	type="text/javascript"></script>

The	page	should	now	load	much	faster	than	before!

MoMo	workshop

178Create	custom	builds

Ext	JS	Workshop
Welcome	to	the	Ext	JS	Workshop.	This	workshop	is	designed	to	deliver	you	a	first	insight	into	the	JavaScript	framework	Ext	JS	for
developing	web	applications.	As	this	workshop	is	further	intended	for	beginners	we'll	mainly	focus	on	the	core	concepts	and
components	delivered	by	Ext	JS	by	simple	tasks.	Hence	we'll	learn	how	to	include	the	framework	into	a	basic	HTML	page,	how	to	use
the		Viewport	,	what	user	interface	components	Ext	JS	provides	to	us	and	how	to	programmatically	interact	with	these	components.

These	goals	are	subdivided	into	the	following	sets	of	modules:

Introduction	to	Ext	JS
Basics
Layouts
Components
Data
Events

Let's	start	with	the	introduction	to	Ext	JS!

MoMo	workshop

179Ext	JS

Introduction

What	is	Ext	JS?

Ext	JS	is	a	JavaScript	based	application	framework	for	developing	interactive	cross-platform	applications	and	is	a	product	of	Sencha.

Useful	resources

API	documentation

The	quantity	and	quality	of	the	ExtJS	API	documentation	is	outstanding.

http://docs.sencha.com/extjs/6.0/6.0.0-classic/

The	docs	provide	a	list	of	all	classes	on	the	left	and	details	once	you	click	on	any	class.	In	order	to	understand	and	make	use	of	ExtJS,	it
is	crucial	to	fully	grasp	the	documentation.

Examples

The	examples	for	the	ExtJS	framework	can	be	found	here:

http://examples.sencha.com/extjs/6.0.0/examples/

As	with	the	API	documentation,	you	may	at	first	be	overwhelmed	at	the	sheer	masses	of	examples.	It	is	nonetheless	very	useful	to	click
through	some	of	them,	as	the	show	how	to	combine	the	classes	of	the	framework	into	small	working	applications.

Other

If	you	want	to	quickly	check	some	class,	you	can	e.g.	use	the	Sencha	Fiddle	website.
Specific	questions	(and	answers)	can	be	browsed	in	the	Sencha	Forums.

MoMo	workshop

180Introduction

https://www.sencha.com/
http://docs.sencha.com/extjs/6.0/6.0.0-classic/
http://examples.sencha.com/extjs/6.0.0/examples/
https://fiddle.sencha.com/#home
https://www.sencha.com/forum/

Workshop	setup
The	workshop	requires	a	minimum	of	preliminary	work.	Please	follow	the	next	steps	to	set	up	your	workshop	environment.

Prepare	workshop	folder

In	this	workshop	we're	going	to	learn	the	basics	of	Ext	JS	by	the	use	of	simple	consecutive	exercises,	where	we're	going	to	create	(and
save)	HTML	files	on	your	local	computer.	In	order	to	have	a	comparable	setup,	at	first	we'll	create	an	appropriate	workshop	folder,
where	to	put	these	files	in.

Open	the	terminal	and	navigate	to	your	home	folder	with:

		$	cd	~

Create	a	new	folder	named		ext-workshop		with:

		$	mkdir	ext-workshop

Enter	the	newly	created	directory	with:

		$	cd	ext-workshop

Some	examples	will	need	some	additional	files.	Download	these	files	by	performing	the	following	steps:

Reopen	the	terminal	and	download	the	workshop	files	into	your		ext-workshop		folder	with:

		$	wget	http://terrestris.github.io/momo3-ws/en/extjs/materials.tar.gz

Extract	the	downloaded	archive	file	with	(this	will	create	a	folder	named		materials		in	your	workshop	directory):

		$	tar	-xvzf	materials.tar.gz

Prepare	simple	workshop	HTTP	server

For	the	first	exercises	we	won't	have	any	need	for	serving	our	code	snippets	via	the	HTTP	protocol,	but	in	the	later	parts	we're	going	to
use	technologies	that	require	a	local	HTML	server.	A	very	simple	way	to	serve	a	content	of	a	specific	directory	over	a	web	server	is	to
use	the	SimpleHTTPServer	module	provided	by	Python.	In	the	next	few	steps	we're	going	to	start	the		SimpleHTTPServer		in	the
workshop	directory	where	all	upcoming	exercise	files	will	be	served	over	the	HTTP	protocol.

(optional)	Open	the	terminal	and	navigate	to	your	workshop	folder	with:

		$	cd	~/ext-workshop

Run	the		SimpleHTTPServer		with:

		$	python	-m	SimpleHTTPServer

This	should	give	you	the	following	output	meaning	that	the	files	of	the	current	directory	are	served	through	port	number	8000.

Serving	HTTP	on	0.0.0.0	port	8000	...

Finally	open	a	web	browser	and	navigate	to		http://0.0.0.0:8000		which	should	give	you	a	listing	of	all	available	files	in	the
served	web	directory.

MoMo	workshop

181Workshop	Setup

https://docs.python.org/2/library/simplehttpserver.html

The	running	SimpleHTTPServer

If	you	want	to	quit	the	server,	you	can	either	simply	quit	the	terminal	or	press		Ctrl	+	C	.

MoMo	workshop

182Workshop	Setup

Basics
Now	that	our	development	environment	is	ready,	it's	time	to	get	started.

In	this	chapter	we'll	learn	how	to:

Create	a	simple	HTML	file	and	how	to	embed	Ext	JS
Create	your	first	Ext	JS	component
Create	and	configure	the	Ext	JS	Viewport

MoMo	workshop

183Basics

Basic	HTML	file	with	Ext	JS
We'll	start	the	workshop	with	creating	a	simple	HTML	page	and	embed	the	framework	into	it.

Create	basic	HTML	page

Basically	we'll	work	with	a	single	HTML	file	we'll	extend	gradually	within	each	section	only.	Our	initial	file	will	thereby	only	contain
the	basic	HTML	template	showing	a	heading.	Let's	create	the	file	by	the	use	of	the	(highly	recommended)	text	editor		atom	.

Exercise

Open	the	terminal	and	navigate	to	your	workshop	directory	(if	not	already	done)	with:

		$	cd	~/ext-workshop

Start	the		atom		editor	with	the		ext-workshop		directory	as	project:

		$	atom	.

Start	view	atom	editor.

Having		atom		opened	we	can	create	a	new	file	by	opening	the	context-menu	on	the	project	folder		ext-workshop		and	selecting		New
File	.

Create	a	new	file	named		index.html		in	the	exercise	directory	and	copy	the	content	of	the	following	basic	HTML	template	into	it

MoMo	workshop

184Include	Ext	JS

basic-template.html

<!DOCTYPE	html>

<html>

				<head>

								<meta	charset="utf-8">

								<title>This	is	a	basic	HTML	template</title>

				</head>

				<body>

								<h1>Use	this	template	to	create	your	own	HTML	files</h1>

				</body>

</html>

Reopen	the	browser	and	(re-)load	the	URL	http://0.0.0.0:8000	to	see	the	changes	take	effect:

The	basic	HTML	page.

Include	Ext	JS
In	the	next	step	we'll	insert	two	important	lines	into	the		index.html		that	will	automatically	include	the	full	ExtJS	library	into	our	basic
HTML	template.	The	Ext	JS	code	itself	is	also	available	online	via		cdnjs	,	so	we	don't	necessarily	have	to	download	the	framework
code	to	our	local	machine	first.	As	you	will	see	in	the	next	few	steps,	the	(productive	version	of	the)	framework	consists	of	two	files:
Both	a		CSS		(Cascading	Style	Sheets)	and	a		JS		(JavaScript)	file:

Exercise

Include	the	external	files	inside	the	end	of	your		<head>		element	of	your		index.html	:
include-ext-cdnjs.html

MoMo	workshop

185Include	Ext	JS

http://0.0.0.0:8000

<!--	include	a	CSS	stylesheet	-->

<link	rel="stylesheet"	href="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/classic/theme-triton/resources/theme-triton-all.css"

<!--	include	an	external	JavaScript	file	-->

<script	src="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/ext-all.js"	type="text/javascript"></script>

Again,	reload	the	URL	in	the	browser	and	keep	track	of	the	changes:

The	basic	HTML	page	after	including	Ext	JS.

For	this	workshop	it's	satisfying	to	include	the	full	builds	of	the	framework	and	to	always	load	them	in	the		head	.	This
technique	allows	us	to	basically	forget	about	these	resources	for	the	course	of	the	workshop.	For	a	production	website	you	would
probably	load	the	files	in	a	different	manor,	and	you	would	rather	not	load	the	versions	of	the	libraries	which	contain	everything.
But	the	creation	of	specific	versions	of	the	base	libraries	that	only	include	what	your	application	actually	needs,	is	way	beyond
the	scope	of	this	workshop.

MoMo	workshop

186Include	Ext	JS

Ext	JS	is	here!
Having	the	last	module	finished,	we	have	a	simple	HTML	page	without	any	real	use	of	the	Ext	JS	framework	present.	We'll	continue	by
creating	a	very	simple	Ext	JS	component	to	verify	the	framework	is	ready	to	work	with.

Exercise

(Re-)open	your		index.html		and	replace	the		<h1>		element	block	within	the		<body>		tag	with	the	following		<script>		block:
open-window.html

<script	type="text/javascript">

				Ext.onReady(function()	{

								Ext.create('Ext.window.Window',	{

												title:	'Hello',

												height:	200,

												width:	400,

												layout:	'fit',

												bodyPadding:	15,

												constrain:	true,

												html:	'Ext	JS	is	here!'

								}).show();

				});

</script>

Reload	the	page	in	the	browser	and	look	what's	going	to	happen:

Hello	Ext	JS.

So,	what	have	we	done	to	create	this	simple	Ext	JS	window?

MoMo	workshop

187Hello	Ext	JS

The	contents	of	the		<script	type="text/javascript">		tag	will	be	interpreted	as	JavaScript	by	the	browser	and	any	JavaScript	code	in
it'll	be	run	as	soon	as	the	interpreter	sees	it.	In	the	next	line	we	are	finally	going	to	really	work	with	Ext	JS.		Ext		is	the	global
namespace	that	encapsulates	all	classes,	singletons	and	methods	provided	by	the	framework.	By	calling	it	on	the	root	scope	(as	the
global	singleton	object),	we	have	access	to	the	global	methods	provided	by	Ext	JS.	Here	we	execute	the	method		onReady()		which	has
an	anonymous	function	as	argument.	This	function	is	being	processed	as	soon	as	the	document	is	ready	(but	before	the	document's
	onload		listener	and	before	images	are	loaded).

As	already	mentioned,	the	Ext	JS	API	documentation	is	quite	substantial	and	really	helpful	while	developing	applications.	Please
take	your	time	to	get	familiar	with	the	documentation	and	start	by	inspecting	the	docs	for	the	method		onReady()		used	above	by
following	this	link.

In	the	anonymous	function	we	pass	to	the		Ext.onReady()		method	we	execute	-	once	again	on	the	Ext	global	object	-	the	method
	create()	.	With	the	help	of	this	method	we	instantiate	a	Ext	JS	class	(to	be	more	specific:	a	subclass	of		Ext.Base)	by	its	full	class
name.	Here	we	create	the	class		Ext.window.Window	,	which,	as	you	may	noticed,	is	a	floating,	resizable	and	draggable	window
containing	simple	HTML	text	as	content.	Every	component	has	a	individual	set	of	configuration	parameters	(e.g.		title),	which	are
passed	to	the		create()		method	as	the	second	parameter	(and	bunched	in	an	object).	And	over	again:	See	the	documentation	for	a	full
list	of	all	available		Configs		for	the	window	class.

MoMo	workshop

188Hello	Ext	JS

http://docs.sencha.com/extjs/6.0/6.0.0-classic/
http://docs.sencha.com/extjs/6.0/6.0.0-classic/#!/api/Ext-method-onReady
http://docs.sencha.com/extjs/6.0/6.0.0-classic/#!/api/Ext.window.Window

Ext	JS	Viewport
In	contrast	to	other	JavaScript	frameworks	(e.g.	jQuery)	Ext	JS	is	typically	used	to	serve	as	an	integral	framework	that	is	used	to	build
feature-rich	single	page	applications	(SPA)	and	not	as	some	kind	of	an	"utility"	or	"helper"	framework	for	isolated	challenges.	Thus	you
would	generally	not	use	Ext	JS	to	integrate	a	single	window	(as	created	in	the	former	section)	in	your	existing	webapplication.

When	developing	an	Ext	JS	application,	(one	of)	the	main	components	you're	dealing	with,	is	the		Ext.container.Viewport	.	The
	Viewport		class	represents	a	specialized	container	that	automatically	resizes	itself	to	the	size	of	the		document	body		and	therefore	the
viewable	application	area.	Further	on	it	automatically	resizes	due	to	resizing	the	browser	window	and	will	perform	sizing	and
positioning	on	its	child	components	as	you	can	add	other	Ext	JS	UI	components	and	containers	to	it.	How	the	positioning	inside	the
	Viewport		takes	place	is	thereby	configurable	by	a	so	called		Layout		(see	next	chapter).

Given	that	the		Viewport		sizes	to	browser	window,	it's	reasonable	to	have	a	single	viewport	per	Ext	JS	application	only.

In	this	section	we're	going	create	a	simple	viewport	containing	a	set	of	nested	child	components.	This	viewport	will	then	act	as	the	basic
template	for	any	further	exercise	in	this	workshop.

Exercise

(Re-)open	your		index.html		and	replace	the	code	creating	the		Ext.window.Window		component	with	the	following	snippet
viewport-simple.js

Ext.create('Ext.container.Viewport',	{

				defaults:	{

								bodyPadding:	15

				},

				items:	[{

								title:	'Item	1',

								html:	'Content	1'

				},	{

								title:	'Item	2',

								html:	'Content	2'

				},	{

								title:	'Item	3',

								html:	'Content	3'

				},	{

								title:	'Item	4',

								html:	'Content	4'

				}]

});

Reload	the	application	page	in	the	browser	and	you'll	notice	the	first	elementary	indications	of	a	simple	full-screen	webapplication
(Try	to	resize	the	browser	window!):

MoMo	workshop

189Viewport

Simple	viewport.

In	the	above	example	we	used	the	method		Ext.create()		to	instantiate	the	component		Ext.container.Viewport		very	similar	to	the
previous	example.	The	result	is	a	stack	of	four	components	composed	of	a		title		and	a		html		value.	Per		defaults		we	declare	that
each	direct	child	component	in	the		Viewport		-	configured	as		item		-	should	be	rendered	with	a		bodyPadding		of	15	pixels
additionally.

Exercise

Use	the	Ext	JS	API	documentation	for	the		Viewport		class	(here)	to	answer	this	question:
I	created	an	Ext	JS	viewport	with	a	couple	of	items	without	any	specific	configurations	except		title		and		html	.	At	his
juncture	the		html		parameter	includes	a	plenty	of	text	content.	Strangely	I	could	not	see	any	scrollbars,	if	the	browser
window	gets	resized.	What	is	wrong	here?

MoMo	workshop

190Viewport

http://docs.sencha.com/extjs/6.0/6.0.0-classic/#!/api/Ext.container.Viewport

Layouts
An	Ext	JS	application	(UI)	is	always	made	up	of	single	components	based	on	the	base	class		Ext.Components	.	The		Viewport		class	we
have	seen	in	the	previous	chapter	is	some	kind	of	a	special	type	of	a	component	as	it	may	contain	other	components.	Once	Ext	JS
components	are	inserted	into	a	superior	container,	its	layout	properties	must	be	defined	(according	to	the	requirement	by	your
application).

Component	architecture,	source:	https://docs.sencha.com/extjs/6.0/core_concepts/images/component_architecture.png

The		Layout		tells	this	superior	container	(e.g.	the		Viewport)	how	to	properly	arrange	its	child	components	(e.g.		Panel)	in	sizing	and
positioning.	As	you	may	correctly	note,	the	recent	example	we	were	using	hasn't	any	specific	layout	set,	but	could	be	rendered	in	the
browser.	This	happens	because	the	default	layout	for	all	containers	is	the	layout	type		Auto		and	this	layout	does	not	specify	any	special
positioning	or	sizing	rules	for	child	elements.	It	simply	renders	the	child	items	as	normal	block	elements	in	the	DOM.

Generally	the	layout	of	a		Container		has	the	be	set	via	the		layout		configuration	attribute.	In	most	cases	it's	satisfactory	to	set	the
name	of	the	requested	layout	as	a	simple	string	(e.g.		'auto')	only,	but	there	are	layouts	available	where	a	full	object,	specifying	the
layout	options	in	more	detail,	are	allowed.	Furthermore	several	layouts	hold	particular	attributes	related	to	the	child	components	of	the
container	specifying	e.g.	it's	inner	position	or	size.

In	this	section	we're	going	to	have	a	quick	look	to	some	of	the	predefined	layouts	Ext	JS	provides	to	us.	Here	we	focus	on	the	following
layouts:

The	descriptions	given	in	the	upcoming	subsections	are	based	on	the	API	documentation.

Column
HBox
VBox
Accordion
Table
Border

For	a	full	list	of	all	layouts	have	a	look	at	the	API	documentation	or	the	Kitchen	Sink.

MoMo	workshop

191Layouts

http://docs.sencha.com/extjs/6.0/6.0.0-classic/#!/api/Ext.layout.Layout
http://docs.sencha.com/extjs/6.0/6.0.0-classic/#!/api/Ext.layout.Layout
http://examples.sencha.com/extjs/6.0.0/examples/kitchensink/#layouts

Column
The		Column		layout	is	the	layout	style	of	choice	for	creating	structural	layouts	in	a	multi-column	format	where	the	width	of	each
column	can	be	specified	as	a	percentage	or	fixed	width,	but	the	height	is	allowed	to	vary	based	on	the	content.

The	layout	does	not	have	any	direct		config		options,	but	it	does	support	a	specific		config		property	of		columnWidth		that	can	be
included	in	the		config		of	any	panel	added	to	it.	The	layout	will	use	the		columnWidth		(if	present)	or		width		of	each	panel	during
layout	to	determine	how	to	size	each	panel.	If		width		or		columnWidth		is	not	specified	for	a	given	panel,	its	width	will	default	to	the
panel's		width		(or	auto).

The		width		property	is	always	evaluated	as	pixels	and	must	be	a	number	greater	than	or	equal	to	1.	The		columnWidth		property	is
always	evaluated	as	a	percentage	and	must	be	a	decimal	value	greater	than	0	and	less	than	1	(e.g.	.25).

Exercise
(Re-)open	your		index.html		and	update	the	code	creating	the		Ext.container.Viewport		component	to	match	the	following
snippet:

layout-column.js

Ext.create('Ext.container.Viewport',	{

				layout:	'column',

				defaults:	{

								bodyPadding:	15,

				},

				items:	[{

								title:	'Item	1',

								columnWidth:	0.3,

								html:	'Content	1'

				},	{

								title:	'Item	2',

								columnWidth:	0.2,

								html:	'Content	2'

				},	{

								title:	'Item	3',

								columnWidth:	0.2,

								html:	'Content	3'

				},	{

								title:	'Item	4',

								columnWidth:	0.3,

								html:	'Content	4'

				}]

});

Reload	the	page	in	the	browser	and	take	a	look	at	the	result:

MoMo	workshop

192Column

Column	layout.

MoMo	workshop

193Column

HBox
The		HBox		layouts	arranges	items	horizontally	across	the	container.	This	layout	optionally	divides	available	horizontal	space	between
child	items	containing	a	numeric		flex		configuration.

This	layout	may	also	be	used	to	set	the	heights	of	child	items	by	configuring	it	with	the		align		option.	Additionally	you	can	specify
how	the	child	items	of	the	container	are	packed	together	by	setting	the		pack		option.

Exercise

(Re-)open	your		index.html		and	update	the	code	creating	the		Ext.container.Viewport		component	to	match	the	following
snippet:

layout-hbox.js

Ext.create('Ext.container.Viewport',	{

				layout:	{

								type:	'hbox',

								pack:	'start',

								align:	'stretch'

				},

				defaults:	{

								bodyPadding:	'10	15',

								margin:	5,

								flex:	1,

				},

				items:	[{

								title:	'Item	1',

								html:	'Content	1'

				},	{

								title:	'Item	2',

								flex:	1.5,

								html:	'Content	2'

				},	{

								title:	'Item	3',

								html:	'Content	3'

				},	{

								title:	'Item	4',

								html:	'Content	4'

				}]

});

Reload	the	page	in	the	browser	and	take	a	look	at	the	result:

MoMo	workshop

194HBox

HBox	layout.

MoMo	workshop

195HBox

VBox
The		VBox		layouts	arranges	items	vertically	across	the	container.	This	layout	optionally	divides	available	vertical	space	between	child
items	containing	a	numeric		flex		configuration.

This	layout	may	also	be	used	to	set	the	widths	of	child	items	by	configuring	it	with	the		align		option.	Additionally	you	can	specify
how	the	child	items	of	the	container	are	packed	together	by	setting	the		pack		option.

Exercise

(Re-)open	your		index.html		and	update	the	code	creating	the		Ext.container.Viewport		component	to	match	the	following
snippet:

layout-vbox.js

Ext.create('Ext.container.Viewport',	{

				layout:	{

								type:	'vbox',

								pack:	'start',

								align:	'stretch'

				},

				defaults:	{

								bodyPadding:	'10	15',

								margin:	5,

								flex:	1,

				},

				items:	[{

								title:	'Item	1',

								html:	'Content	1'

				},	{

								title:	'Item	2',

								flex:	1.5,

								html:	'Content	2'

				},	{

								title:	'Item	3',

								html:	'Content	3'

				},	{

								title:	'Item	4',

								html:	'Content	4'

				}]

});

Reload	the	page	in	the	browser	and	take	a	look	at	the	result:

MoMo	workshop

196VBox

VBox	layout.

MoMo	workshop

197VBox

Accordion
The		Accordion		layout	is	a	layout	that	manages	multiple	Panels	in	an	expandable	accordion	style	such	that	by	default	only	one	panel
can	be	expanded	at	any	given	time	(set		multi	-config	to	have	more	open).	Each	Panel	has	built-in	support	for	expanding	and
collapsing.

Only	panels	and	all	subclasses	of		Ext.panel.Panel		may	be	used	in	an	accordion	layout	container.

Exercise

(Re-)open	your		index.html		and	update	the	code	creating	the		Ext.container.Viewport		component	to	match	the	following
snippet:

layout-accordion.js

Ext.create('Ext.container.Viewport',	{

				layout:	'accordion',

				defaults:	{

								bodyPadding:	15,

								border:	false

				},

				items:	[{

								title:	'Item	1',

								html:	'Content	1'

				},	{

								title:	'Item	2',

								html:	'Content	2'

				},	{

								title:	'Item	3',

								html:	'Content	3'

				},	{

								title:	'Item	4',

								html:	'Content	4'

				}]

});

Reload	the	page	in	the	browser	and	take	a	look	at	the	result:

MoMo	workshop

198Accordion

Accordion	layout.

MoMo	workshop

199Accordion

Table
The		Table		layout	allows	you	to	easily	render	content	into	an	HTML	table.	The	total	number	of	columns	can	be	specified,	and
	rowspan		and		colspan		can	be	used	to	create	complex	layouts	within	the	table.

In	the	case	of		Table		layout,	the	only	valid	layout	config	properties	are		columns		and		tableAttrs	.	However,	the	items	added	to	a
layout	can	supply	the	config	properties		rowspan		(the	number	of	rows	that	the	spanned	cell	needs	to	cover),		colspan		(the	number	of
cells	that	the	cell	should	replace)	and		cellCls		(a	CSS	class	name	added	to	the	table	cell	containing	the	item).

The	basic	concept	of	building	up	a		Table		layout	is	conceptually	very	similar	to	building	up	a	standard	HTML	table.	You	simply	add
each	panel	(or	"cell")	that	you	want	to	include	along	with	any	span	attributes	specified	as	the	special	config	properties	of		rowspan		and
	colspan		which	work	exactly	like	their	HTML	counterparts.	Rather	than	explicitly	creating	and	nesting	rows	and	columns	as	you
would	in	HTML,	you	simply	specify	the	total	column	count	in	the	layout	config	and	start	adding	panels	in	their	natural	order	from	left
to	right,	top	to	bottom.	The	layout	will	automatically	figure	out,	based	on	the	column	count,	rowspans	and	colspans,	how	to	position
each	panel	within	the	table.

Just	like	with	HTML	tables,	your		rowspans		and		colspans		must	add	up	correctly	in	your	overall	layout	or	you'll	end	up	with
missing	and/or	extra	cells!

Exercise

(Re-)open	your		index.html		and	update	the	code	creating	the		Ext.container.Viewport		component	to	match	the	following
snippet:

layout-table.js

Ext.create('Ext.container.Viewport',	{

				layout:	{

								type:	'table',

								columns:	3,

								tableAttrs:	{

												style:	{

																width:	'100%'

												}

								}

				},

				defaults:	{

								bodyPadding:	15,

				},

				items:	[{

								title:	'Item	1',

								rowspan:	1,

								colspan:	1,

								html:	'Content	1'

				},	{

								title:	'Item	2',

								rowspan:	1,

								colspan:	1,

								html:	'Content	2'

				},	{

								title:	'Item	3',

								rowspan:	1,

								colspan:	1,

								html:	'Content	3'

				},	{

								title:	'Item	4',

								colspan:	2,

								rowspan:	1,

								html:	'Content	4'

				}]

});

MoMo	workshop

200Table

Reload	the	page	in	the	browser	and	take	a	look	at	the	result:

Table	layout.

MoMo	workshop

201Table

Border
The		Border		layout	is	a	multi-pane,	application-oriented	UI	layout	style	that	supports	multiple	nested	panels,	automatic	bars	between
	regions		and	built-in	expanding	and	collapsing	of		regions	.

When	using	this	layout	note,	that	any	container	using	the	border	layout	must	have	a	child	item	with		region:'center'	.	This	child	item
in	the	center	region	will	always	be	resized	to	fill	the	remaining	space	not	used	by	the	other	regions	in	the	layout.	Any	child	items	with	a
region	of		west		or		east		may	be	configured	with	either	an	initial		width	,		flex		or	an	initial	percentage		width		value.	Any	child
items	with	a	region	of		north		or		south		may	be	configured	with	either	an	initial		height	,		flex		value	or	an	initial	percentage
	height		value.

Exercise

(Re-)open	your		index.html		and	update	the	code	creating	the		Ext.container.Viewport		component	to	match	the	following
snippet:

layout-border.js

Ext.create('Ext.container.Viewport',	{

				layout:	'border',

				defaults:	{

								bodyPadding:	15,

								collapsible:	true,

								split:	true

				},

				items:	[{

								title:	'Item	1',

								region:	'north',

								height:	100,

								html:	'Content	1'

				},	{

								title:	'Item	2',

								region:	'east',

								width:	150,

								html:	'Content	2'

				},	{

								title:	'Item	3',

								region:	'west',

								width:	150,

								html:	'Content	3'

				},	{

								title:	'Item	4',

								region:	'center',

								html:	'Content	4'

				}]

});

Reload	the	page	in	the	browser	and	take	a	look	at	the	result:

MoMo	workshop

202Border

Border	layout.

MoMo	workshop

203Border

Components
Components	are	referred	to	the	Ext	JS	class		Ext.Component		which	is	the	base	class	for	all	components.	Generally	speaking	a
component	itself	is	a	predefined	Ext	JS	compatible	module	composed	of	HTML,	CSS	and	JavaScript.	In	the	former	exercises	we
already	met	the	components		Ext.window.Window	,		Ext.container.Viewport		and		Ext.panel.Panel		(whereas	the	latter	not	explicit,
but	it's	the	default	component	in	the		Viewport		container).

Every	Component	has	a	shorthand	name	called		xtype	.	The	xtype	is	especially	useful	if	you	want	to	render	your	application	lazily,	that
means	rendering	your	components	at	the	time	they're	getting	meaningful	for	your	application,	e.g.	creating	an	error	message	at	the	time
an	error	occurred.	In	the	upcoming	examples	we'll	use	the		xtype		to	create	components.

A	typical	application's	component	hierarchy	starts	with	a	viewport	at	the	top,	which	has	other	containers	and/or	components	nested
within	it.

The	component	hierarchy,	source:	https://docs.sencha.com/extjs/6.0/core_concepts/images/component_heirarchy_5.png

In	the	upcoming	section	we're	going	to	inspect	some	components	that	might	be	useful	for	any	Ext	JS	application	your're	going	to
develop	in	the	future:

The	descriptions	given	in	the	upcoming	subsections	are	based	on	the	API	documentation.

Panel
Image
Form
Tree
Grid

MoMo	workshop

204Components

http://docs.sencha.com/extjs/6.0/6.0.0-classic/#!/api/Ext.Component

Panel
A		Panel		is	a	container	designed	for	building	structured	blocks	for	application	oriented	user	interfaces.	Panels	are,	by	their	inheritance
from		Ext.container.Container	,	capable	of	being	configured	with	a	layout	(see	previous	chapter)	and	containing	child	components.
Panels	also	provide	built-in	collapsible,	expandable	and	closable	behavior	and	can	be	easily	dropped	into	any	container	or	layout,
whereas	the	layout	and	rendering	is	completely	managed	by	the	framework.

In	most	applications	the	panel	is	one	of	the	most	often	used	components.	In	the	next	exercise	we'll	extent	our	existing	viewport	by	only
a	few	configurations	and	will	see,	that	we	have	worked	with	panels	(even	we	haven't	specified	it)	yet.

Exercise

(Re-)open	your		index.html		and	extend	the		Ext.container.Viewport		to	match	the	following	snippet:
component-panel.js

Ext.create('Ext.container.Viewport',	{

				layout:	'border',

				defaults:	{

								xtype:	'panel',

								bodyPadding:	15,

								collapsible:	true,

								split:	false,

								margin:	5

				},

				items:	[{

								region:	'north',

								collapsible:	false,

								height:	60,

								border:	false,

								html:	'Content	1'

				},	{

								title:	'Item	2',

								region:	'east',

								width:	'20%',

								html:	'Content	2'

				},	{

								title:	'Item	3',

								region:	'west',

								width:	'20%',

								html:	'Content	3'

				},	{

								region:	'center',

								collapsible:	false,

								html:	'Content	4'

				},	{

								title:	'Item	5',

								region:	'south',

								maxHeight:	350,

								collapsed:	true,

								html:	'Content	5'

				}]

});

MoMo	workshop

205Panel

Advanced	Border	layout.

As	you	may	notice,	it's	hardly	to	spot	any	viewable	difference	to	our	previous	example.	But	have	a	look	at	the		defaults		attribute	set
in	the	viewport.	It	contains	a	new	key	named		xtype		(remember:	it's	the	shorthand	name	for	a	component)	with	the	value		panel	.
Thus	every	direct	child	in	the	viewport	will	be	instantiated	as	a		panel	.

Advanced	panel	configuration
A	Panel	may	also	contain	bottom	and	top	toolbars,	along	with	separate	header,	footer	and	body	sections.

Exercise

(Re-)open	your		index.html		and	extend	the	panel	rendered	in	the	viewports	center	by	the	following	snippet:
component-panel-toolbar.js

tbar:	[{

				xtype:	'button',

				text:	'Button	1',

				iconCls:	'fa	fa-repeat'

}]

Reload	the	page	in	the	browser	and	take	a	look	at	the	result:

Panel	toolbar.

MoMo	workshop

206Panel

Nested	components
The		Ext.Img		component	can	be	used	to	insert	an	image	into	the	Ext	JS	handled	lifecycle.	For	example	the	class	makes	it	easy	to
change	the	source	of	the	image	container.

Exercise

(Re-)open	your		index.html		and	extend	the		Ext.container.Viewport		items	by	the	following	snippet:
component-image.js

{

				region:	'north',

				collapsible:	false,

				height:	60,

				border:	false,

				bodyPadding:	5,

				items:	[{

								xtype:	'image',

								src:	'./materials/ext-logo.png',

								height:	50

				}]

}

Reload	the	page	in	the	browser	and	take	a	look	at	the	result:

Nested	component	image	in	a	panel.

MoMo	workshop

207Image

Form	Fields
The		Ext.form.Panel		presents	a	subclass	of	the	panel	and	is	especially	useful	for	building	user	interaction	web	forms	and	for	saving
and	loading	remote	data.	Usually	you	combine	a	form	panel	with	subclasses	inherited	from	the		Ext.field.Field		class.	In	the
following	example	we'll	get	to	know	some	of	the	most	important	fields	one	would	use	in	a	form	(listed	with	xtypes	and	links	to	the	API
documentation):

textfield
displayfield
numberfield
combobox
checkbox
datepicker
slider
filefield
button

Exercise

(Re-)open	your		index.html		and	extend	the	panel	in	the	viewport's	east	region	by	the	following	snippet:
component-form-fields.js

MoMo	workshop

208Form

http://docs.sencha.com/extjs/6.0/6.0.0-classic/#!/api/Ext.form.field.Text
http://docs.sencha.com/extjs/6.0/6.0.0-classic/#!/api/Ext.form.field.Display
http://docs.sencha.com/extjs/6.0/6.0.0-classic/#!/api/Ext.form.field.Number
http://docs.sencha.com/extjs/6.0/6.0.0-classic/#!/api/Ext.form.field.ComboBox
http://docs.sencha.com/extjs/6.0/6.0.0-classic/#!/api/Ext.form.field.Checkbox
http://docs.sencha.com/extjs/6.0/6.0.0-classic/#!/api/Ext.picker.Date
http://docs.sencha.com/extjs/6.0/6.0.0-classic/#!/api/Ext.slider.Single
http://docs.sencha.com/extjs/6.0/6.0.0-classic/#!/api/Ext.form.field.File
http://docs.sencha.com/extjs/6.0/6.0.0-classic/#!/api/Ext.button.Button

{

				xtype:	'form',

				title:	'FormPanel',

				region:	'east',

				width:	'20%',

				autoScroll:	true,

				defaults:	{

								anchor:	'100%'

				},

				items:	[{

								xtype:	'textfield',

								name:	'text',

								fieldLabel:	'Text',

								emptyText:	'Enter	a	text'

				},	{

								xtype:	'displayfield',

								name:	'status',

								fieldLabel:	'Status',

								value:	'OK'

				},	{

								xtype:	'numberfield',

								name:	'number',

								fieldLabel:	'Number',

								emptyText:	'Enter	a	number',

								minValue:	0,

								maxValue:	99

				},	{

								xtype:	'combo',

								name:	'combo',

								fieldLabel:	'Combo',

								emptyText:	'Select	from	list',

								minValue:	0,

								maxValue:	99,

								store:	[

												'Entry	1',

												'Entry	2',

												'Entry	3'

]

				},	{

								xtype:	'checkbox',

								name:	'check',

								fieldLabel:	'Check'

				},	{

								xtype:	'datefield',

								name:	'dateField',

								fieldLabel:	'Date	Field'

				},	{

								xtype:	'slider',

								name:	'slider',

								fieldLabel:	'Slider',

								minValue:	0,

								maxValue:	100,

								value:	25

				},	{

								xtype:	'filefield',

								name:	'upload',

								fieldLabel:	'Upload'

				}]

}

Reload	the	page	in	the	browser	and	take	a	look	at	the	result:

MoMo	workshop

209Form

Nested	component	image	in	a	panel.

As	stated	above,	the	form	is	very	useful	if	you	want	to	systematically	read	out	values	given	by	the	user	and	to	work	with	them
afterwards,	e.g.	sending	the	values	to	a	server	endpoint.	In	the	next	example	we're	going	to	create	another	useful	form	component,	the
	Ext.form.FieldSet		class.	The	fieldset	is	a	specialized	container	for	grouping	fields.	We	we'll	now	create	a	fieldset	with	a	textarea	and
a	button	(ignore	the		handler		method	for	the	moment,	we'll	explain	events	and	component	querying	later	on).

Add	the	following	fieldset	to	the	lower	end	of	the	form	field	we	declared	above:

		{

				xtype:	'fieldset',

				title:	'Input	data',

				layout:	'fit',

				items:	[{

								xtype:	'textarea',

								height:	180,

								isFormField:	false

				},	{

								xtype:	'button',

								text:	'Read	input	data',

								handler:	function(btn)	{

												var	form	=	btn.up('form'),

																textArea	=	form.down('textarea');

												textArea.setValue(

																JSON.stringify(

																				form.getValues(),	null,	4

)

);

								}

				}]

		}

Reload	the	page	in	the	browser,	enter	some	custom	values	in	the	form	field	and	press	the	button		Read	input	data	:

MoMo	workshop

210Form

Nested	component	image	in	a	panel.

MoMo	workshop

211Form

Trees
The		Ext.tree.Panel		class	provides	a	tree-structured	UI	representation	of	tree-structured	data.	A	treepanel	must	be	bound	to	a
	Ext.data.TreeStore		(the	Ext	JS	data	package	including	stores	will	be	handled	in	the	next	chapter).

Exercise

(Re-)open	your		index.html		and	extend	the		Ext.container.Viewport		items	by	the	following	snippet:
component-treepanel.js

{

				xtype:	'treepanel',

				width:	'20%',

				bodyPadding:	0,

				title:	'TreePanel',

				region:	'west',

				rootVisible:	false,

				store:	{

								data:	{

												text:	'Root',

												children:	[{

																text:	'Child	1',

																leaf:	true

												},	{

																text:	'Child	2',

																leaf:	true

												},	{

																text:	'Child	3',

																leaf:	true

												},	{

																text:	'Child	4',

																children:	[{

																				text:	'GrandChild	1',

																				leaf:	true

																},	{

																				text:	'GrandChild	2',

																				leaf:	true

																}]

												}]

								}

				}

}

Reload	the	page	in	the	browser	and	take	a	look	at	the	result:

MoMo	workshop

212Tree

Treepanel	with	dummy	items.

MoMo	workshop

213Tree

Grid
The		Ext.grid.Panel		class	is	of	avail	for	showing	up	(large	amounts)	of	tabular	data.	The	required	properties	of	a	gridpanel	are	a	store
and	a	column	definition.

Exercise

(Re-)open	your		index.html		and	extend	the		Ext.container.Viewport		items	by	the	following	snippet:
component-grid.js

{

				xtype:	'gridpanel',

				title:	'GridPanel',

				region:	'south',

				bodyPadding:	0,

				maxHeight:	350,

				collapsed:	true,

				columns:	[{

								text:	'First	name',

								dataIndex:	'firstName',

								flex:	1

				},	{

								text:	'Last	name',

								dataIndex:	'lastName',

								flex:	1

				},	{

								text:	'Instruments',

								dataIndex:	'instruments',

								flex:	1

				}],

				store:	{

								data:	[{

												firstName:	'Angus',

												lastName:	'Young',

												instruments:	'Guitar'

								},	{

												firstName:	'Cliff',

												lastName:	'Williams',

												instruments:	'Bass	guitar,	vocals'

								},	{

												firstName:	'Brian',

												lastName:	'Johnson',

												instruments:	'Vocals'

								},	{

												firstName:	'Stevie',

												lastName:	'Young',

												instruments:	'Guitar,	vocals'

								},	{

												firstName:	'Chris',

												lastName:	'Slade',

												instruments:	'Drums,	percussion'

								}]

				}

}

Reload	the	page	in	the	browser	and	take	a	look	at	the	result:

MoMo	workshop

214Grid

Gridpanel	with	some	inline	data.

Final	output
Finally	your	Ext	JS	application	should	look	similar	to	this:

Final	application	layout.

MoMo	workshop

215Grid

Data
Now	we've	became	acquainted	with	one	of	most	important	Ext	JS	visual	components,	we're	going	to	learn	how	one	could	load	remote
data	into	the	existing	webapplication	without	reloading	the	page	itself.	For	example	this	might	be	interested	for	you	if	you	want	to
implement	a	paging	functionality	to	the	grid.	In	this	context	we'll	get	in	touch	with	the	Ext	JS	data	package	that	is	responsible	for
loading	(and	saving)	all	of	the	data	in	the	application.	The	package	consists	of	multiple	classes,	but	there	are	three	that	are	more
important	than	all	the	others:	The		Ext.data.Model	,		Ext.data.Store		and		Ext.data.proxy.Proxy		(sub-)classes.

The	Ext	JS	data	package,	source:	http://docs.sencha.com/extjs/6.0/core_concepts/images/data-model.png

In	the	forthcoming	exercises	we're	going	to	recreate	a	gridpanel	in	the	center	of	our	border	layout	that'll	contain	an		Ext.data.Store	
reading	remote	data	with	the	use	of	an		Ext.data.proxy.Ajax		proxy.	The	store	will	be	associated	with	an		Ext.data.Model	.

Preparation
Model
Proxy	and	store

MoMo	workshop

216Data

Preparation
Let's	start	this	section	by	creating	another	gridpanel	in	the	center	of	our	border	layout.	Here	we're	going	to	replace	the	existing	the	panel
with	the	gridpanel	by	keeping	the	toolbar.	The	toolbar	(and	its	button)	will	be	needed	in	the	next	module.	The		columns		definition	will
stay	unaffected	in	comparison	to	the	gridpanel	we	created	in	the	recent	exercise.

Exercise

(Re-)open	your		index.html		and	find	the	declaration	of	the	center	region.
Replace	the	panel	in	the	border	layouts	center	with	a	grid,	but	leave	the	toolbar	and	set	the	store	to	null	(for	the	moment).

data-grid.js

{

				xtype:	'gridpanel',

				title:	'GridPanel	with	remote	store',

				region:	'center',

				collapsible:	false,

				bodyPadding:	0,

				columns:	[{

								text:	'First	name',

								dataIndex:	'firstName',

								flex:	1

				},	{

								text:	'Last	name',

								dataIndex:	'lastName',

								flex:	1

				},	{

								text:	'Instruments',

								dataIndex:	'instruments',

								flex:	1

				}],

				store:	null,

				tbar:	[{

								xtype:	'button',

								text:	'Button	1',

								iconCls:	'fa	fa-repeat'

				}]

}

Reload	the	page	in	the	browser	and	verify	the	empty	gridpanel	in	the	layouts	center:

MoMo	workshop

217Preparation

The	new	gridpanel.

MoMo	workshop

218Preparation

Model
The	core	of	the	data	package	is	the		Ext.data.Model		class.	A	Model	or	Entity	represents	some	object	that	your	application	manages,
e.g.	the	(former)	members	of	a	rock	band.	Models	are	used	by	stores,	which	are	in	turn	used	by	many	of	the	data-bound	components	in
Ext	JS.	The	most	significant	parts	(or	properties)	of	a	model	are		Fields		(they	handle	the	members	of	a	model),		Proxies		(they	handle
the	loading	and	saving	of	model	data),		Validations		(they	handle	validation	of	the	data,	e.g.	if	a	field	has	not-null	value)	and
	Associations		(they	handle	the	relations	and	linkages	to	other	model	instances).

Parts	of	the	Ext	JS	model	class,	source:	http://docs.sencha.com/extjs/6.0/core_concepts/images/model-breakdown.png

In	this	exercise	we'll	build	up	a	simple	model,	that'll	contain	some	(string)	fields	and	simple	validation	for	input	data	(ensuring	that	all
fields	have	a	value).	As	we	only	have	this	single	model	we	don't	want	to	model	any	associations.	Please	refer	to	the	API	documentation
for	further	details.	You	both	have	the	possibility	to	assign	the	proxy	in	the	model	or	the	store	(using	that	model).	Both	ways	do	have
advantages	depending	on	your	application	setup:	If	you	set	the	proxy	in	the	model	it	allows	you	to	load	and	save	instances	of	this	model
without	the	need	of	a	store	and	multiple	stores	could	use	the	same	model.	In	contrast	defining	the	proxy	in	the	store	it	allows	you	to	use
the	same	data	model	in	multiple	stores,	even	if	the	stores	will	load	their	data	from	different	sources.	In	this	exercise	we're	going	to	set
the	proxy	in	the	store	(without	any	specific	reason).

Exercise

(Re-)open	your		index.html		and	insert	the	following	code	before	the	instantiation	of	the	viewport	(line	~15)	to	create	a	new
model	called		FormerMembers	:

data-model.js

MoMo	workshop

219Model

http://docs.sencha.com/extjs/6.0/6.0.0-classic/#!/api/Ext.data.Model

Ext.define('FormerMembers',	{

				extend:	'Ext.data.Model',

				fields:	[{

								name:	'firstName',

								type:	'string'

				},	{

								name:	'lastName',

								type:	'string'

				},	{

								name:	'instruments',

								type:	'string'

				}],

				validators:	{

								firstName:	'presence',

								lastName:	'presence',

								instruments:	'presence'

				}

});

MoMo	workshop

220Model

Proxy	and	store
A	store	takes	care	of	the	client	side	caching	of	model	objects	and	can	be	configured	to	load	data	via	a	proxy.	They	provide	different
functions	for	accessing	the	underlying	model	instances	(e.g.	sorting,	filtering	or	querying).	To	load	and	save	instances	a	store	uses	a
proxy.	Generally	speaking	the	data	source	can	be	either	local	(client	proxy)	or	remote	(server	proxy),	whereas	the	client	proxies
load/save	their	data	locally	and	the	server	proxies	load/save	their	data	by	sending	requests	to	a	remote	server.

In	the	following	exercise	we'll	create	a	new		Ext.data.Store		reading	data	with	a		Ext.data.proxy.Ajax		from	a	remote	source	(The
remote	source	is	the	python	server	our	simple	webapplication	lives	on,	but	be	aware	that	it	could	be	any	other	remote	source).

Exercise

(Re-)open	your		index.html		and	insert	the	following	code	after	the	instantiation	of	the	model		FormerMembers		(line	~34)	to
create	the	store.

data-store.js

Ext.create('Ext.data.Store',	{

				autoLoad:	true,

				storeId:	'formerMembers',

				model:	'FormerMembers',

				proxy:	{

								type:	'ajax',

								url:	'./materials/former-members.json',

								reader:	{

												type:	'json',

												rootProperty:	'data'

								}

				}

});

If	you	would	reload	the	page	now,	you	wouldn't	be	able	to	see	any	changes	in	the	centered	gridpanel	as	the	newly	created	store	isn't
regarded	as	being	existent	to	the	grid.

Find	the	declaration	of	the	gridpanel	and	update	the		store		property	to:

		store:	'formerMembers'

Finally	reload	the	page	and	view	the	results.

MoMo	workshop

221Proxy	and	store

Grid	with	remote	data	loaded.

MoMo	workshop

222Proxy	and	store

Events
In	Ext	JS		events		are	signals	from	a	class	that	are		fired		if	anything	happened	to	a	class.	Events	are	fired	globally	in	the	Ext
namespace	so	that	every	class	can		listen		to	those.	In	our	Ext	JS	application	we	can	use	these	events	to	code	specific	reponses	that
will	be	executed	if	a	certain	event	is	being	fired.	Nearly	all	Ext	JS	components	and	classes	fire	different	kinds	of	events	at	their
lifecycle.	For	example,	each	class	inherited	from		Ext.Component		fires	the	event		added		after	the	component	had	been	added	to	a
container.	We	can	listen	for	that	event	by	configuring	a	simple		listeners		object.

In	this	section	we'll	get	to	know	three	events	fired	by	different	components	to	get	a	basic	idea	about	the	potential	behind		events		and
	listeners	.

Event	click
Event	afterrender
Event	change

MoMo	workshop

223Events

Event		click	
The		click		event	is	being	fired	when	e.g.	a	button	or	a	menu	entry	is	clicked.

In	the	following	exercise	we'll	use	the		click		event	of	the	button	rendered	to	the	toolbar	in	the	centered	panel	to	load	the	remote	data	if
the	button	is	clicked	by	the	user.

Exercise

(Re-)open	your		index.html		and	find	the	instantiation	of	the	store		formerMembers		(line	~29)	we	introduced	in	the	former
module.
Set		autoLoad:	false		in	the	store.

After	reloading	the	page	you	should	notice	that	the	grid	contains	no	data	anymore.	Can	you	explain	why?

In	the	next	few	steps	we're	going	to	fetch	back	our	missing	data	by	reusing	the	already	existing	button	in	the	toolbar	as	a		Load	data	
button:

Find	the	button	declaration	within	the	panel	in	the	center	region	and	rename	it	accordingly	(text:	'Load	data').
Register	a	new	listener	to	the		click	-event	and	pass	an	anonymous	function	to	it.	This	function	will	be	called	if	the		click		event
is	fired	by	the	button	class:

event-click.js

listeners:	{

				click:	function(btn)	{

								var	gridpanel	=	btn.up('gridpanel');

								gridpanel.getStore().load();

				}

}

Again,	reload	the	page	in	the	browser	and	click	the	updated		Load	data		button.

Load	remote	data	`onClick`.

Dissecting	the	example

MoMo	workshop

224Event	click

Let's	have	a	more	detailed	look	at	the	function	we	passed	to	the		click		listener:

		function(btn)	{...}

Every	event	can	be	fired	with	optional	arguments	passed	to	the	listener.	Here,	our	anonymous	handler	function	receives	the
argument		btn	,	whereat	the	variable		bt		holds	a	reference	to	the	button	instance	firing	the		click		event	("the	clicked	button").

		var	gridpanel	=	this.up('gridpanel');

Remember,	we	are	dealing	with	hierarchically	structured	components.	Ext	JS	(internally)	registers	all	instantiated	components	in
its		Ext.ComponentManager	.	Within	this	manager	we	can	navigate	across	and	search	the	application	component	composition.	The
explanation	of	the	manager	and	the	corresponding		Ext.ComponentQuery		singleton	is	far	beyond	the	goals	of	this	workshop,	but	it's
very	recommended	to	have	a	look	at	the	very	detailed	documentation.	Long	story	short:	Each	component	provides	us	the	method
	up()		and	each	container	the	methods		up()	,		down()		and		query()		to	simply	navigate	across	the	component	hierarchy	by	the
use	of	very	simple	filter	expressions.	The	easiest	way	one	can	think	of	is	build	a	filter	that	returns	the	first	xtype	in	the	lower/upper
hierarchy	level	of	a	given	component.	Having	this	in	mind,	the	upper	method	will	return	the	first	component	of	xtype		gridpanel	
in	the	upper	direction	based	on	the	pressed	button.

		gridpanel.getStore().load();

Now	we	got	the	gridpanel,	we	can	access	the	underlying	store	by	using	the		getStore()		method	and	directly	execute	the	method
	load()		to	load	any	local	or	remote	data	associated	with	the	store.

MoMo	workshop

225Event	click

http://docs.sencha.com/extjs/6.0/6.0.0-classic/#!/api/Ext.ComponentQuery

Event		afterrender	
The		afterrender		event	is	being	fired	after	a	component	is	finally	rendered	(to	the	DOM)	and	is	very	often	used	if	you	want	to	make
sure,	your	listener	function	is	called	after	the	component	is	rendered.

In	the	following	exercise	we'll	register	another		listener		to	the	button		Load	data		that	will	show	up	a	minimalistic	message	box
(Ext.toast)	to	the	user	after	the	button	has	been	rendered.

Exercise

(Re-)open	your		index.html		and	find	the	button	declaration	within	the	panel	in	the	center	region	and	we	used	in	the	former
exercise.
Register	a	listener	for	the	event		afterrender		by	appending	the	following	code	block	to	its		listeners		array:

event-afterrender.js

afterrender:	function(cmp)	{

				Ext.toast({

								html:	'Click	<code>Load	data</code>!',

								title:	'Hint',

								align:	't',

				});

}

And	again,	reload	the	page	in	the	browser	and	you	will	see	the	toast.

A	simple	Ext.toast.

Dissecting	the	example

Let's	have	a	more	detailed	look	at	the	function	we	passed	to	the		afterrender		listener:

		function(cmp)	{...}

As	already	illustrated,	events	can	hold	extra	arguments	which	will	be	received	in	the	listener	functions	and	similiar	to	the		click	
event,	the		afterrender		event	passes	a	reference	to	the	rendered	component	to	the	anonymous	function.	The	variable		cmp	
therefore	refers	to	the	button	itself	(but	is	not	used	in	our	function).

MoMo	workshop

226Event	afterrender

		Ext.toast({

				html:	'Click	<code>Load	data</code>!',

				title:	'Hint',

				align:	't',

		});

The		Ext.toast		class	provides	a	lightweight,	auto-dismissing	pop-up	notifications	and	is	configurable	by	the	use	of	a
configuration	object.	Here	we	set	both	the		html		and		title		keys	for	a	simple	message	and	title	as	well	as	the		align		key	for
specifing	the	alignment	of	the	toast	message	to	the	top	of	its	anchor	(the	viewport).

MoMo	workshop

227Event	afterrender

Event		change	
The		change		event	is	being	fired	when	e.g.	a	file	input	field's	value	has	changed.

In	this	(final)	exercise	we'll	add	a	new	textfield	to	the	gridpanels	toolbar	involving	a	filter	function	that	is	called	on	every	change	made
by	the	user	to	the	textfield.

Exercise

(Re-)open	your		index.html		and	find	the	toolbar	declaration	inside	the	gridpanel	rendered	to	the	center	region.

At	first	we	will	make	use	of	the	class		Ext.toolbar.Fill		to	add	a	non-rendering	placeholder	item	to	the	toolbar	whereby	all	following
items	will	be	aligned	to	the	right	of	the	toolbar.	(Other	useful	toolbar	items	you	may	interested	in	are		tbseparator		and		tbspacer	.)

Add	the	placeholder	to	the	end	of	the	toolbar	by	inserting	the	following	declaration:

		{

				xtype:	'tbfill'

		}

Next	we'll	add	a	textfield	with	the		change		listener	to	the	toolbar:
event-change.js

{

				xtype:	'textfield',

				emptyText:	'Find	by	First	name',

				listeners:	{

								change:	function(field,	newValue,	oldValue)	{

												field.up('gridpanel').getStore().filter({

																property:	'firstName',

																value:	newValue	||	'',

																anyMatch:	true,

																caseSensitive:	false

												});

								}

				}

}

Reload	the	page	in	the	browser	and	you	should	notice	a	new	textfield	in	the	upper	right	of	the	centered	gridpanel.

Filter	textfield.

Try	out	the	newly	created	filter	by	loading	data	into	the	grid	and	changing	the	textfields	value.

MoMo	workshop

228Event	change

Filter	textfield.

Dissecting	the	example

Let's	have	a	more	detailed	look	at	the	function	we	passed	to	the		change		listener:

		function(field,	newValue,	oldValue)	{...}

If	the	value	of	a	field	is	changed,	our	anonymous	function	is	being	called	with	passed	arguments		field	,		newValue		and
	oldValue	.		field		holds	a	reference	to	the	textfield	itself,		newValue		the	changed/prevailing	and		oldValue		the
original/preceding	value.

		field.up('gridpanel').getStore()

Again,	we	use	the	methods		up()		to	get	a	reference	to	the	gridpanel	and		getStore()		to	get	the	associated	store	(see	event	click
for	the	detailed	information).

		.filter({...})

With	the	store	in	hand	we	can	access	all	methods	provided	by	the	(instantiated)		Ext.data.Store		class.	As	we	want	to	filter	the
store	by	a	particular	value	given	in	the	textfield,	we	can	make	use	of	the	method		filter()	.	This	method	filters	the	data	in	the
store	by	one	or	more	fields	and	can	be	configured	with	a	detailed	filter	configuration	(from		Ext.util.Filter		class).

		{

				property:	'firstName',

				value:	newValue	||	'',

				anyMatch:	true,

				caseSensitive:	false

		}

The	given	object	represents	a	filter	that	is	applied	to	the		filter()		function	and	is	defined	to	filter	the		property		(that	is	the	field
in	the	model	to	filter	on)		'firstName'	.	The		value		to	filter	with	is	the		newValue		given	by	the	event	or	an	empty	string	('')	if
the	passed	value	is	falsy	(false	,		0	,		''			null	,		undefined		or		NaN).	Setting		anyMatch		to		true		configures	the	filter	to
match	the	value	characters	at	any	position	in	the	store's	value	and	by	having		caseSensitive		set	to		false		we	ignore	exact	case
matching.

MoMo	workshop

229Event	change

MoMo	workshop

230Event	change

GeoExt3	workshop

Welcome	to	the	GeoExt3	workshop,	in	which	you'll	learn	how	to	use	GeoExt3	in	your	ExtJS	applications.

This	workshop	is	composed	out	of	several	modules,	which	usually	are	done	in	order.

Before	diving	into	programming,	the	metainformation	chapter	has	a	lot	of	information	about	this	workshop,	the	intended	audience
and	how	to	best	create	solutions	for	the	workshop.
Afterwards	we'll	work	through	the	first	steps	chapter,	in	which	you	learn	about	Openlayers,	ExtJS	and	GeoExt3.
Now	that	we	know	these	libraries	and	frameworks,	we	are	ready	to	use	the		GeoExt.component.Map		in	the	map	chapter.
Your	map	may	very	well	contain	a	lot	of	layers,	these	can	be	managed	with	a	layer	tree.
The	next	chapter	is	all	about	vector	features,	you'll	create	a	grid	that	is	synced	with	a	vector	layer	in	the	map.
The	last	chapter	shows	other	aspects	of	GeoExt	components	like	popups,	an	embeddable	overview	map,	the	utility	classes	to	talk	to
MapFish	print	servers	and	other	parts	of	GeoExt.

MoMo	workshop

231GeoExt

Metainformation
In	this	chapter	we'll	provide	you	with	some	metainformation	about	this	workshop.

In	order	to	efficiently	work	through	the	workshop,	you	are	advised	to	read	the	following	parts:

General	information	about	the	workshop
The	target	audience	of	the	workshop
The	goals	we	try	to	achieve	in	the	workshop
How	to	setup	your	development	environment	so	that	you	can	work	on	the	workshop	tasks	efficiently
Some	final	notes	(e.g.	about	the	chosen	structure)

Let's	start	with	some	general	information	about	the	workshop.

MoMo	workshop

232Metainformation

About

Authors

This	workshop	was	created	by	the	following	individuals:

Marc	Jansen
Daniel	Koch

Contribute
The	workshop	repository	can	be	found	at	https://github.com/geoext/geoext3-ws.

We	look	forward	to	external	contributors.	If	you	found	an	issue	or	have	an	idea	of	how	to	improve	the	workshop,	just	open	an	issue
here.

Used	libraries

During	the	workshop	you	will	work	with	the	following	JavaScript	libraries	or	frameworks:

OpenLayers	(v3.13.0):	http://openlayers.org/
ExtJS	(v6.0.0,	GPL):	https://www.sencha.com/products/extjs/,	download
GeoExt3	(c326b01c	pre-v3.0.0):	http://geoext.github.io/geoext3/

Copyright

The	copyright	is	©	GeoExt	Contributors.

License

The	workshop	content	is	published	under	CC-BY-SA-4.	The	full	text	is	available	online.

GeoExt3	itself	is	released	under	the	terms	of	the	GPL	v3.

MoMo	workshop

233About

https://github.com/geoext/geoext3-ws
https://github.com/geoext/geoext3-ws/issues
http://openlayers.org/
https://www.sencha.com/products/extjs/
https://www.sencha.com/legal/GPL/
https://github.com/geoext/geoext3/commit/c326b01c20ffcfa453dafe754093753b7af95bc9
http://geoext.github.io/geoext3/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/geoext/geoext3-ws/blob/master/LICENSE.md

Target	audience
This	workshop	is	targeted	at	developers	that	want	to	try	out	the	GeoExt	library.

GeoExt	is	based	on	OpenLayers	and	ExtJS,	so	a	bit	of	background	in	these	JavaScript	libraries	/	frameworks	doesn't	hurt.	It	is	not
necessarily	needed	to	have	a	deep	understanding	of	the	base	libraries,	though.	All	examples	or	tasks	usually	highlight	the	key	aspects
that	make	everything	work	together.

Some	basic	familiarity	with	JavaScript	is	assumed,	but	again,	we	will	not	dive	to	deep	into	the	language,	so	basically	any	interested
person	will	be	able	to	understand	what	is	going	on.

In	order	to	accomplish	everything	in	the	workshop,	some	OGC	services	(such	as	WMS	and	WFS)	will	be	used.	We	should	provide	you
with	enough	written	background	so	you'll	grasp	the	core	of	the	tasks.

Still	unsure	if	you	can	work	through	this	material?

We	strive	to	make	this	workshop	as	understandable	as	possible,	so	please	try	it	out!	If	you	fail	or	experience	problems,	just	tell	us	so:
We	are	really	looking	forward	to	getting	feedback.

MoMo	workshop

234Target	audience

Goals
These	are	the	goals	we	want	to	reach	with	this	workshop:

Learn	the	basics	of	GeoExt
theoretically
practically

Learn	how	to	work	with	the	API-docs
Learn	about	other	places	where	to	find	help	for	GeoExt
Get	to	know	certain	core	classes	of	GeoExt
Iteratively	create	an	application
Learn	how	to	debug	in	case	of	errors

MoMo	workshop

235Goals

Development	environment

Required	software

In	order	to	complete	this	workshop,	you	will	need	the	following	software:

A	text	editor,	for	example	Atom	or	some	other	editor	in	which	you	feel	comfortable.
A	browser,	to	read	the	workshop	instructions	and	open	up	the	tasks	you	will	have	to	accomplish.
Node.JS,	so	that	you	can	run	the	workshop	examples.	Node.js	will	also	install		npm	,	which	we	will	use	to	install	workshop
dependencies	and	to	serve	the	workshop	slides	as	HTML.	If	you	are	on	linux,	we	have	made	excellent	experiences	with		nvm		to
install	various	versions	of	Node.js.

Preparation	steps
Download	the	latest	workshop-contens	from	this	URL:

https://github.com/geoext/geoext3-ws/archive/master.zip
Extract	the	zip-archive	into	a	directory	of	your	choice.
You	should	find	the	following	files	and	directories	in	the		geoext3-ws-master	-folder:

	LICENSE.md	

	package.json	

	README.md	

	src/	

Install	the	dependencies	of	the	workshop	via		npm	install	.
Here	are	some	example	steps	for	a	Linux-system:

		#	create	a	directory	gx-ws	…

		mkdir	-p	~/gx-ws

		#	…	go	there	…

		cd	~/gx-ws

		#	…	grab	the	zip-archive	…

		wget	https://github.com/geoext/geoext3-ws/archive/master.zip

		#	…	unzip	the	archive	…

		unzip	master.zip

		#	…	change	into	the	extracted	folder

		cd	geoext3-ws-master

		#	Install	dependencies	via	npm

		npm	install

Starting	the	workshop

Issue	the	following	command	in	the	directory		geoext3-ws-master		from	above:

		npm	start

This	should	give	you	an	output	like	below:

MoMo	workshop

236Development	environment

https://atom.io/
https://nodejs.org/en/
https://github.com/creationix/nvm#node-version-manager-
https://github.com/geoext/geoext3-ws/archive/master.zip

		Live	reload	server	started	on	port:	35729

		Press	CTRL+C	to	quit	...

		info:	loading	book	configuration....OK

		info:	load	plugin	gitbook-plugin-image-captionsOK

		info:	load	plugin	gitbook-plugin-highlightOK

		info:	load	plugin	gitbook-plugin-searchOK

		info:	load	plugin	gitbook-plugin-sharingOK

		info:	load	plugin	gitbook-plugin-fontsettingsOK

		info:	load	plugin	gitbook-plugin-livereloadOK

		info:	>>	6	plugins	loaded

		info:	start	generation	with	website	generator

		info:	clean	website	generatorOK

		info:	generation	is	finished

		Starting	server	...

		Serving	book	on	http://localhost:4000

If	instead	you	see	some	error	like	below,	the	workshop	is	likely	already	running	on	your	system	or	some	other	application	is
blocking	the	ports		35729		and		4000	:

		...	Uhoh.	Got	error	listen	EADDRINUSE	:::35729	...

		Error:	listen	EADDRINUSE	:::35729

				at	Object.exports._errnoException	(util.js:870:11)

				at	exports._exceptionWithHostPort	(util.js:893:20)

				at	Server._listen2	(net.js:1237:14)

				at	listen	(net.js:1273:10)

				at	Server.listen	(net.js:1369:5)

				at	Server.listen	(/home/jansen/.gitbook/versions/2.6.7/node_modules/tiny-lr/lib/server.js:164:15)

				at	Promise.apply	(/home/jansen/.gitbook/versions/2.6.7/node_modules/q/q.js:1078:26)

				at	Promise.promise.promiseDispatch	(/home/jansen/.gitbook/versions/2.6.7/node_modules/q/q.js:741:41)

				at	/home/jansen/.gitbook/versions/2.6.7/node_modules/q/q.js:1304:14

				at	flush	(/home/jansen/.gitbook/versions/2.6.7/node_modules/q/q.js:108:17)

		You	already	have	a	server	listening	on	35729

		You	should	stop	it	and	try	again.

Stopping	the	workshop

Simply	hit		Ctrl-C		in	the	terminal	where	you	started	the	workshop,	e.g.		~/gx-ws/geoext3-ws-master	.

MoMo	workshop

237Development	environment

Notes
In	this	section	we	want	to	keep	certain	notes	about	this	workshop.	It	is	not	a	necessary	requirement	to	read	this	section	if	you	just	start
with	GeoExt.

In	case	you	have	questions	about	why	we	have	structured	the	workshop	as	we	have	done	it,	please	continue	reading.

Q:	Why	not	as	Ext.application?	Why	no	MVC?

Why	didn't	you	create	the	examples	as		Ext.application()	?	An	why	aren't	you	using	the	MVC	pattern?

We	recommend	the	use	of		Ext.application		/		Ext.app.Application		and	the	use	of	the	MVC	or	MVVM	pattern	for	real-world
applications.	For	this	introductory	workshop	we	think	this	would	complicate	stuff	more	than	necessary.

Q:	Why	not	with	help	of		Sencha	Cmd	?
Why	don't	you	use	the		Sencha	Cmd		for	the	workshop?

We	use	the		sencha		tool	quite	often	in	our	daily	work,	but	found	that	the	additional	burden	of	installation	steps	would	be	distracting	for
the	main	focus	of	this	workshop.

MoMo	workshop

238Notes

First	steps
Now	that	we	know	all	the	required	metainformation	and	have	set	up	our	development	environment,	it	is	time	to	get	started.

In	this	chapter	we	will	learn	5	things:

1.	 Where	to	save	our	exercise	HTML	files.
2.	 How	to	include	OpenLayers	in	our	exercise.
3.	 How	to	include	ExtJS	in	our	exercise.
4.	 How	to	include	GeoExt	in	our	exercise.
5.	 Where	to	look	for	more	documentation.

MoMo	workshop

239First	steps

Hello	exercise
Throughout	this	workshop,	you	will	encounter	various	tasks,	that	you	should	accomplish.	Most	of	the	time	you	will	be	asked	to	edit	an
HTML	or	JavaScript-file	and	see	if	the	result	is	as	intended.

In	order	to	have	comparable	results,	you	are	advised	to	save	your	HTML	and	any	additional	files	inside	of	the		src/exercise/	-folder.
If	you	followed	the	instructions	for	setting	up	the	development	environment,	this	folder	will	be	located	at:

	~/gx-ws/geoext3-ws-master/src/exercise	.

If	you	e.g.	store	a	file	named		map.html		inside	this	directory,	and	you	are	serving	the	workshop	as	recommended,	than	this	file	can	be
accessed	via	the	following	URL:

/map.html

Shall	we	tackle	our	first	tiny	excercise?	Ok	then,	here	we	go:

Exercises

Create	a		my-exercise.html		HTML-file	in	the		src/exercise/	-folder,	open	it	with	your	text	editor	and	fill	it	with	the	template
HTML	from	below:

template.html

<!DOCTYPE	html>

<html>

				<head>

								<meta	charset="utf-8">

								<title>This	is	a	basic	HTML	template</title>

				</head>

				<body>

								<h1>Use	this	template	to	create	your	own	HTML	files</h1>

				</body>

</html>

See	if	your	file	is	available	in	a	browser	under	the	following	URL:	/my-exercise.html
In	the	body	of	the	HTML	change	the	content	of	the	first		<h1>	-element	to	read:		GeoExt	rocks!	
Check	if	any	changes	to	the	HTML	file	are	reflected	in	your	browser.	Reload	the	URL	/my-exercise.html

If	everything	worked,	you	should	see	something	like	in	the	following	images.

Our	first	HTML-page

MoMo	workshop

240Hello	exercise

Indeed,	it	does!

Please	note:

In	case	you	added	more	files	(e.g.for	upcoming	tasks)	to	the		src/exercise/		folder	and	they	are	not	instantly	available	under
the	URL	/filename.html

…	then	you	have	to	stop	and	start	the	fileserving	again.	See	the	notes	on	starting	/	stopping	(Hint:		Ctrl-C		or		npm	start)

MoMo	workshop

241Hello	exercise

Hello	OpenLayers
Ok,	we	can	create	and	edit	HTML-files,	and	we	can	see	the	changes	in	our	browser	because	all	files	in		src/exercises/		are	always
available	under	.

Let's	see	how	we	can	include	OpenLayers	in	our	page	so	that	we	can	start	to	use	it.	In	order	to	do	so,	we	need	to	include	a	CSS	and	a
JavaScript	file.

Exercises

See	if	you	find	a	folder		lib/ol/		inside	of	the		src/exercise/	-folder.	It	should	contain	two	files:		ol.js		and		ol.css	
Create	a	new		ol-example.html		from	the	basic	template

template.html

<!DOCTYPE	html>

<html>

				<head>

								<meta	charset="utf-8">

								<title>This	is	a	basic	HTML	template</title>

				</head>

				<body>

								<h1>Use	this	template	to	create	your	own	HTML	files</h1>

				</body>

</html>

Change		ol-example.html		to	include	both	files	in	the		<head>	.	Use	the	below	templates	to	include	a	CSS	and	a	JavaScript	file.

include-js-css.html

<!--	include	a	CSS	stylesheet	-->

<link	rel="stylesheet"	href="path/to/file.css"	type="text/css">

<!--	include	an	external	JavaScript	file	-->

<script	src="path/to/file.js"	type="text/javascript"></script>

Verify	that	/ol-example.html	loads	your	file.
In	the		<body>		of	the	file,	add	the	following	HTML-fragment,	which	includes	a	tiny	bit	of	JavaScript:

simple-map.html

<div	id="map"	style="height:	600px"></div>

<script	type="text/javascript">

		var	map	=	new	ol.Map({

				target:	'map',

				layers:	[

						new	ol.layer.Tile({

								source:	new	ol.source.MapQuest({layer:	'sat'})

						})

],

				view:	new	ol.View({

						center:	ol.proj.fromLonLat([106.92,	47.92]),

						zoom:	4

				})

		});

</script>

When	you	now	reload	the	/ol-example.html	URL,	you	should	see	an	OpenLayers	map	centered	on	Ulan	Bator:

MoMo	workshop

242Hello	OpenLayers

A	very	basic	OpenLayers	maa

To	verify	we	are	really	looking	at	Ulan	Bator,	just	change	the	layers	to	now	consist	an	OpenStreetMap	layer,	which	e.g.	has	labels
and	a	country	outline.	Use	the	following	JavaScript	snippet	at	the	appropriate	place:

new	ol.layer.Tile({

		source:	new	ol.source.OSM()

})

Say	"hi"	to	the	OSM	layer

MoMo	workshop

243Hello	OpenLayers

MoMo	workshop

244Hello	OpenLayers

Hello	ExtJS
Before	we	can	learn	how	to	use	GeoExt,	we	need	to	see	if	we	can	use	ExtJS	in	our	page.

Again	we'll	need	to	include	two	resources	in	a	HTML	page	to	be	able	to	use	ExtJS:	And	again	it	is	a	CSS	and	a	JavaScript	file.

Exercises

Create	a	new		ext-example.html		from	the	basic	template

template.html

<!DOCTYPE	html>

<html>

				<head>

								<meta	charset="utf-8">

								<title>This	is	a	basic	HTML	template</title>

				</head>

				<body>

								<h1>Use	this	template	to	create	your	own	HTML	files</h1>

				</body>

</html>

Change		ex-example.html		to	include	the	following	two	files:
https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/classic/theme-crisp/resources/theme-crisp-all.css
https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/ext-all.js

include-js-css.html

<!--	include	a	CSS	stylesheet	-->

<link	rel="stylesheet"	href="path/to/file.css"	type="text/css">

<!--	include	an	external	JavaScript	file	-->

<script	src="path/to/file.js"	type="text/javascript"></script>

Verify	that	/ext-example.html	loads	your	file.
Does	your	basic	page	look	like	the	one	in	the	following	image?	Why	does	the	font	look	so	different?

MoMo	workshop

245Hello	ExtJS

https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/classic/theme-crisp/resources/theme-crisp-all.css
https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/ext-all.js

The	template-HTML	with	the	ExtJS	resources	included

In	order	to	see	if	everything	was	included	successfully,	let's	instantiate	an	ExtJS	class.	Please	copy	and	paste	the	following	into	the
	<body>		of	the	test-file:

<script>

Ext.onReady(function(){

				var	win	=	Ext.create('Ext.window.Window',	{

								width:	200,

								height:	200,

								title:	'ExtJS	…',

								html:	'…	is	easy!'

				});

				win.show();

});

</script>

You	should	see	an		Ext.window.Window		like	below:

ExtJS	is	easy

MoMo	workshop

246Hello	ExtJS

MoMo	workshop

247Hello	ExtJS

Hello	GeoExt
Now	that	we	know	how	to	use	OpenLayers	and	ExtJS,	it's	time	to	join	these	libraries.	Enter	GeoExt!

We'll	start	with	the	result	of	the	last	exercise,	which	was	a	basic	HTML	file	that	included	the	resources	to	ExtJS.

Exercises

Copy	the	following	HTML	into	a	file		hello-geoext.html		in	the		exercises	-directory:

<!DOCTYPE	html>

<html>

				<head>

								<meta	charset="utf-8">

								<title>This	is	a	basic	HTML	template</title>

								<link	rel="stylesheet"	href="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/classic/theme-triton/resources/theme-triton-all.css"

								<script	src="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/ext-all.js"	type="text/javascript"></script>

				</head>

				<body>

								<script>

								Ext.onReady(function(){

												var	win	=	Ext.create('Ext.window.Window',	{

																width:	200,

																height:	200,

																title:	'ExtJS	…',

																html:	'…	is	easy!'

												});

												win.show();

								});

								</script>

				</body>

</html>

Add	the	CSS	and	JavaScript	for	OpenLayers:

<link	rel="stylesheet"	href="./lib/ol/ol.css"	type="text/css">

<script	src="./lib/ol/ol.css"	type="text/javascript"></script>

Add	the	JavaScript	for	GeoExt:		https://geoext.github.io/geoext3/master/GeoExt.js	
Most	GeoExt	components	don't	need	special	CSS.	If	you	use	the		Popup	-components,	you	may	want	to	include	the	following	CSS
file:		http://geoext.github.io/geoext3/master/resources/css/gx-popup.css	
Verify	that	/hello-geoext.html	loads	in	your	browser

Adding	our	first	GeoExt	component

Exercises

We	are	now	going	to	create	an	instance	of		GeoExt.component.Map		and	render	it	in	the	window	we	created	in	the	previous
example.
In	order	to	do	that:

Remove	the		html:	'…is	easy!'		from	the		Ext.window.Window		configuration	object
And	add	the	following	lines	instead:

MoMo	workshop

248Hello	GeoExt

		//	in	the	config	object:

		layout:	'fit',

		items:	[

						Ext.create('GeoExt.component.Map',	{

										map:	new	ol.Map({

														target:	'map',

														layers:	[

																		new	ol.layer.Tile({

																						source:	new	ol.source.OSM()

																		})

],

														view:	new	ol.View({

																		center:	ol.proj.fromLonLat([106.92,	47.92]),

																		zoom:	4

														})

										})

						})

]

Next:	Please	change	the	title	of	the	window	and	make	is	slightly	bigger.

If	your	example	looks	like	the	one	below,	everything	is	set	up	correctly!

Hello	GeoExt!

MoMo	workshop

249Hello	GeoExt

Useful	resources
In	order	to	efficiently	work	with	all	the	libraries	used	throughout	the	workshop,	you'll	need	know	some	other	resources:

OpenLayers

Homepage:	http://openlayers.org

API	documentation

Use	th	API	docs	of	OpenLayers	to	know	about	available	classes	and	their	properties:

http://openlayers.org/en/v3.13.1/apidoc/

The	left	side	of	the	API-docs	is	a	list	of	all	objects	in	OpenLayers.	If	you	click	on	the	name	of	an	OpenLayers	class	there,	you	see	the
API	of	the	object.

In	the	subpages	you	can	find	a	list	of	all	properties,	methods	and	events	the	class	provides.	You	should	make	yourself	familiar	with	how
to	navigate	the	API	docs.

Examples

Many	people	learn	best	when	they	see	the	parts	of	a	library	in	action.	OpenLayers	has	a	vast	amount	of	published	online	examples,
which	mostly	focus	on	one	aspect	of	the	library.

http://openlayers.org/en/v3.13.1/examples/

Browse	the	examples	and	learn	how	to	find	one	that	provides	the	information	you	need.

Other

OpenLayers	also	has	published	a	workshop	at	http://openlayers.org/workshop/.
Common	problems	that	may	arise	when	using	OpenLayers	3	are	explained	in	the	Frequently	Asked	Questions	(FAQ).
For	specific	questions	one	can	ask	on	stackoverflow	using	the	tag	'openlayers-3'.

ExtJS

API	documentation

The	quantity	and	quality	of	the	ExtJS	API	documentation	is	outstanding.

http://docs.sencha.com/extjs/6.0/6.0.0-classic/

The	docs	provide	a	list	of	all	classes	on	the	left	and	details	once	you	click	on	any	class.	In	order	to	understand	and	make	use	of	ExtJS,	it
is	crucial	to	fully	grasp	the	documentation.

Examples

The	examples	for	the	ExtJS	framework	can	be	found	here:

http://examples.sencha.com/extjs/6.0.0/examples/

As	with	the	API	documentation,	you	may	at	first	be	overwhelmed	at	the	sheer	masses	of	examples.	It	is	nonetheless	very	useful	to	click
through	some	of	them,	as	the	show	how	to	combine	the	classes	of	the	framework	into	small	working	applications.

MoMo	workshop

250Useful	resources

http://openlayers.org
http://openlayers.org/en/v3.13.1/apidoc/
http://openlayers.org/en/v3.13.1/examples/
http://openlayers.org/workshop/
http://openlayers.org/en/v3.13.1/doc/faq.html
http://stackoverflow.com/questions/tagged/openlayers-3
http://docs.sencha.com/extjs/6.0/6.0.0-classic/
http://examples.sencha.com/extjs/6.0.0/examples/

Other

If	you	want	to	quickly	check	some	class,	you	can	e.g.	use	the	Sencha	Fiddle	website.
Specific	questions	(and	answers)	can	be	browsed	in	the	Sencha	Formums.

GeoExt

Homepage:	https://geoext.github.io/geoext3/

API	documentation

The	GeoExt	API	documentation	(generated	with	the	same	software	as	the	ExtJS	one)	can	be	found	here:

http://geoext.github.io/geoext3/master/docs/

If	you	know	your	way	around	in	The	ExtJS	documentation,	you	will	easily	understand	the	GeoExt	one.

There	is	also	a	version	of	the	API	of	GeoExt,	which	includes	all	the	classes	from	the	ExtJS	framework:

http://geoext.github.io/geoext3/master/docs-w-ext/

Examples

The	(few)	examples	of	the	GeoExt	library	can	be	accessed	from	the	homepage:	https://geoext.github.io/geoext3/

MoMo	workshop

251Useful	resources

https://fiddle.sencha.com/#home
https://www.sencha.com/forum/
https://geoext.github.io/geoext3/
http://geoext.github.io/geoext3/master/docs/
http://geoext.github.io/geoext3/master/docs-w-ext/
https://geoext.github.io/geoext3/

Summary
This	chapter	gently	introduced	you	to	OpenLayers,	ExtJS	and	GeoExt.	You	have	learned…

…	how	and	where	to	create	exercise	files.
…	how	to	include	the	resources	of	OpenLayers.
…	how	to	include	the	resources	of	ExtJS.
…	how	to	include	the	resources	of	GeoExt.
…	where	to	find	more	information	online.

The	next	chapter	will	focus	on	the		GeoExt.component.Map		which	we	have	seen	briefly	in	the	first	example	we	created.

MoMo	workshop

252Summary

Map
This	chapter	will	introduce	you	to	one	of	the	most	central	components	in	GeoExt:	the		GeoExt.component.Map	.

Will	work	through	the	following	parts	to	learn	about	this	component:

Creating	a	basic	example
Dissecting	the	parts	of	the	example
Explore	configuration	variants

MoMo	workshop

253Map

Basic	example
We	want	to	have	a	look	at	a	fully	working	example	first.

Exercises

Create	a	new	file		map.html		in	the		src/exercise	-directory.
Paste	the	following	html-code	into	the	file	you	have	just	created:

		<!DOCTYPE	html>

		<html>

				<head>

								<meta	charset="utf-8">

								<title>Exercise	|	GeoExt	Workshop</title>

								<link	rel="stylesheet"	href="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/classic/theme-triton/resources/theme-triton-all.css"

								<script	src="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/ext-all.js"	type="text/javascript"></script

								<link	rel="stylesheet"	href="./lib/ol/ol.css"	type="text/css">

								<script	src="./lib/ol/ol.js"	type="text/javascript"></script>

								<script	src="https://geoext.github.io/geoext3/master/GeoExt.js"	type="text/javascript"></script>

				</head>

				<body>

								<script>

		var	map;

		Ext.onReady(function(){

				//	1)	OpenLayers

				//

				//	Create	an	instance	of	an	OpenLayers	map:

				map	=	new	ol.Map({

								layers:	[

												new	ol.layer.Tile({

																source:	new	ol.source.OSM()

												})

],

								view:	new	ol.View({

												center:	ol.proj.fromLonLat([106.92,	47.92]),

												zoom:	12

								})

				});

				//	2)	GeoExt

				//

				//	Create	an	instance	of	the	GeoExt	map	component	with	that	map:

				var	mapComponent	=	Ext.create('GeoExt.component.Map',	{

								map:	map

				});

				//	3)	Ext	JS

				//

				//	Create	a	viewport

				var	vp	=	Ext.create('Ext.container.Viewport',	{

								layout:	'fit',

								items:	mapComponent

				});

		});

								</script>

				</body>

		</html>

Verify	that	/map.html	loads	in	your	browser	and	looks	like	the	picture	below.

MoMo	workshop

254Basic	example

A	map	component	in	a	fullscreen	viewport

We	will	now	dissect	the	example	and	explain	what	each	part	does.

MoMo	workshop

255Basic	example

Dissecting	the	example
Let's	look	at	the	parts	of	the	HTML	page.

The	HTML	skeleton

The	HTML	of	the	page	looks	as	follows:

<!DOCTYPE	html>

<html>

				<head>

								<meta	charset="utf-8">

								<title>Exercise	|	GeoExt	Workshop</title>

								<link	rel="stylesheet"	href="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/classic/theme-triton/resources/theme-triton-all.css"

								<script	src="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/ext-all.js"	type="text/javascript"></script>

								<link	rel="stylesheet"	href="./lib/ol/ol.css"	type="text/css">

								<script	src="./lib/ol/ol.js"	type="text/javascript"></script>

								<script	src="https://geoext.github.io/geoext3/master/GeoExt.js"	type="text/javascript"></script>

				</head>

				<body>

								<script>

								</script>

				</body>

</html>

HTML5	DOCTYPE

The	first	line	in	this	document	is	the		doctype		of	the	HTML.	By	specifying…

<!DOCTYPE	html>

…we	declare	that	the	HTML	file	shall	be	handled	as	an	HTML5	document.	We	recommend	the	usage	of	this	doctype	to	force	browsers
into	fixed	rules	of	rendering	the	page.	This	eventually	also	reduces	inconsistencies	of	the	behaviour	of	the	page	in	various	browsers.

Declaration	of	the	character	set

In	order	to	tell	the	browser	that	we	have	encoded	our	file	as	UTF-8,	we	add	a		<meta>	-tag	to	the		<head>		of	the	document:

<head>

				<meta	charset="utf-8">

</head>

This	way	we	can	be	relatively	sure	that	all	the	characters	we	enter	into	the	document	(e.g.	German	umlauts	like		ä	,		ö		or		ü	;	or
	Улаанбаатар)	are	correctly	displayed	when	viewing	the	site.

CSS	and	JavaScript	resources

Also	in	the		<head>		of	the	document	we	load	external	JavaScript	and	CSS	files,	so	we	can	use	our	needed	libraries	later.

<head>

				<link	rel="stylesheet"	href="URL-or-relative-path-to-file"	type="text/css">

				<script	src="URL-or-relative-path-to-file"	type="text/javascript"></script>

</head>

MoMo	workshop

256Dissecting	the	example

https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5

For	this	workshop	it	will	be	enough	to	always	include	the	full	builds	of	the	library;	and	to	always	load	them	in	the		<head>	.	This
technique	allows	us	to	basically	forget	about	these	resources	for	the	course	of	the	workshop.	For	a	production	website	you	would
probably	load	the	files	in	a	different	manor,	and	you	would	rather	not	load	the	versions	of	the	libraries	which	contain	everything.	The
creation	of	specific	versions	of	the	base	libraries	that	only	include	what	your	application	actually	needs,	is	way	beyond	the	scope	of	this
workshop.

	<script>	-tag	in	the		<body>	

Our	body	of	the	HTML	file	is	really,	really,	really	minimalistic:

<body>

				<script>

				</script>

</body>

We	only	include	one		<script>	-tag	that	will	contain	all	the	JavaScript	that	we	need	to	create	our	map.	The	contents	of	this	tag
will	be	interpreted	as	JavaScript,	and	the	code	will	be	run	as	soon	as	the	browser	sees	it.

JavaScript	code	for	the	map
All	our	code	to	create	the	full	screen	map	lives	in	the		<script>	-tag	in	the	HTML		<body>	.

Let's	go	through	all	the	lines	in	there.

A	variable	named		map	

The	first	line	in	the	example	reads:

var	map;

This	creates	a	global	variable	named	map,	which	(at	this	point)	has	the	value		undefined	.	Later	on	we	will	store	our	instance	of	the
	ol.Map		in	that	variable.	We	have	made	it	global	to	allow	for	easier	debugging	(e.g.	in	the	developer	tools	of	your	browser).	For	the
workshop	it	is	OK	to	create	a	lot	of	global	variables	for	stuff	you	want	to	examine	later	on;	in	production	sites	it	usually	frowned	upon.

Passing	a	function	to		Ext.onReady	

The	next	line	reads:

Ext.onReady(function(){

				//	some	other	lines	we	do	not	care	about	now

});

These	lines	pass	an	anonymous	(e.g.	unnamed)	function	to	the	method		Ext.onReady	.	This	method	will	execute	the	passed	function	as
soon	as	the	Document	is	ready,	e.g.	External	resources	have	loaded	and	the	DOM	(Document	Object	Model)	of	the	page	is	ready	to	be
manipulated.

Behind	the	curtains,	when	we	create	instances	of	some	Ext	classes,	they	will	eventually	need	to	modify	the	DOM.	In	order	to	run	into
problems	when	such	changes	happen	to	early	(remember,	all	code	in	the		<script>		tag	is	executed	as	soon	as	it	is	being	read),	we	wrap
the	real	code	to	actually	create	ExtJS	components	into	a	function.	We	then	simply	tell	ExtJS	to	delay	the	real	work	to	a	later	time,	when
everything	is	ready.

Let's	have	a	look	at	the	parts	inside	this	function.

Creating	an		ol.Map	

MoMo	workshop

257Dissecting	the	example

http://programmers.stackexchange.com/a/277283

First	we	want	to	create	an	instance	of	an		ol.Map	:

map	=	new	ol.Map({

				layers:	[

								new	ol.layer.Tile({

												source:	new	ol.source.OSM()

								})

],

				view:	new	ol.View({

								center:	ol.proj.fromLonLat([106.92,	47.92]),

								zoom:	12

				})

});

These	lines	create	an	OpenLayers	map	and	configure	it	with	a	view	that	is	centered	on	Ulan	Bator	and	that	has	one	layer	showing	pre-
rendered	tiles	from	the	OpenStreetMap	project.

You	should	already	be	slightly	familiar	with	OpenLayers	and	can	basically	use	any	map	that	works	without	GeoExt.

Since	we	did	not	write		var	map	=	…	,	the	assignment	will	happen	to	the	global	variable	map,	that	we	declared	in	the	first	line	of	the
	script	-tag.	You	can	easily	debug	the	OpenLayers	map	this	way.

Creating	a		GeoExt.component.Map	

Next	we	use	the	method		Ext.create		with	two	arguments:	the	name	of	the	class	to	create,	and	a	configuration	object	with	properties
for	the	instance.

var	mapComponent	=	Ext.create('GeoExt.component.Map',	{

				map:	map

});

In	plain	English	this	line	could	read

Please	create	an	instance	of	the	class		GeoExt.component.Map		and	ensure	that	it	is	configured	with	the	OpenLayers	map	I	have
stored	in	the	variable		map	.	Once	you	have	done	that,	please	store	this	instance	in	a	variable		mapComponent	.

After	these	lines	have	executed,	we	now	have	two	variables,	one	holding	the	plain	OpenLayers	map	(map),	and	one	that	is	named
	mapComponent		which	contains	an	instance	of	a	GeoExt	class;	and	this	instance	knows	about	the	OpenLayers	map.

Creating	a		Ext.Viewport	

The	final	four	lines	in	the	block	read:

var	vp	=	Ext.create('Ext.container.Viewport',	{

				layout:	'fit',

				items:	mapComponent

});

Again	we	use		Ext.create		to	build	an	instance	of	a	class,	this	time	of	the		Ext.container.Viewport		class.	From	the	ExtJS	API	docs:

A	specialized	container	representing	the	viewable	application	area	(the	browser	viewport).

The	Viewport	renders	itself	to	the	document	body,	and	automatically	sizes	itself	to	the	size	of	the	browser	viewport	and	manages
window	resizing.	There	may	only	be	one	Viewport	created	in	a	page.

(source)

This	viewport	will	be	as	big	as	the	browser	viewport.	All	it's	children	(configured	via	the		items	-key)	will	be	layed	out	according	to
the		fit	-layout.	This	layout	ensures	that	the	child	component	(in	our	case	the		mapComponent)	will	be	as	big	as	the	viewport	itself.

MoMo	workshop

258Dissecting	the	example

http://www.openstreetmap.org/
http://docs.sencha.com/extjs/6.0/6.0.0-classic/#!/api/Ext.container.Viewport
http://docs.sencha.com/extjs/6.0/6.0.0-classic/#!/api/Ext.layout.container.Fit

Try	to	resize	your	browser	window	and	see	that	the	viewport	(and	the	containing	map	component)	always	fill	out	the	full	area	of	the
browser	window.

Next	steps

Let's	look	at	various	variants	to	configure	the	three	parts	of	our	map.

MoMo	workshop

259Dissecting	the	example

Configuration	variants
This	chapter	looks	at	our	possibilities	to	customize	the	appearance	and	behaviour	of	the	map.

Configuring	aspects	of	OpenLayers

As	you	have	seen,	we	have	simply	created	an	instance	of		ol.Map		and	passed	it	to	the		GeoExt.component.Map	.	If	we	configure	the
	ol.Map		differently,	the	changes	should	be	reflected	in	the	final	application.

Exercises

Change	the	following	aspects	of	the	OpenLayers	map:

Set	a	different	map	center.
Initially	zoom	to	another	region.
Add	more	layers	to	the	map.	Try	the	layers	from	these	WMS	capabilities	for	example:

http://ows.terrestris.de/osm/service?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetCapabilities
http://ows.terrestris.de/osm-gray/service?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetCapabilities

Add	another	control.	Try	these,	for	example:
	ol.control.ScaleLine	

	ol.control.MousePosition	

Configuring	aspects	of	ExtJS

Change	the	following	aspects	of	the	extJS	components:

Use	another	layout	for	the	viewport.	Just	remember	that	you	probably	need	to	change	two	places:
The		layout		config	of	the	viewport.
And	depending	on	the	chosen	layout,	children	(our	map-component)	may	need	new	properties.

Wrap	the		GeoExt.component.Map		in	a	panel	with	a	title.

Configuring	aspects	of	GeoExt
Of	course	you	can	also	change	aspects	directly	via	GeoExt:

Set	the	center	of	the	map,	but	this	time	with	GeoExt.
Add	a	layer	with	GeoExt.

MoMo	workshop

260Configuration	variants

http://ows.terrestris.de/osm/service?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetCapabilities
http://ows.terrestris.de/osm-gray/service?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetCapabilities

Summary
This	chapter	has	shown	you	how	to	use	the		GeoExt.component.Map	.	We	first	started	with	a	working	example,	that	was	the	dissected	in
great	detail.	You	have	then	learned	how	to	configure	your	application	by	changing	properties	of	OpenLayers-,	ExtJS-	and	GeoExt-
objects.

The	next	chapter	will	now	introduce	a	component	to	deal	with	the	possibly	hierarchical	structure	of	layers	in	the	tree:	we	want	to	add	a
layer-tree.

MoMo	workshop

261Summary

Layer	tree
Now	that	we	have	a	map-component	in	an	ExtJS	layout,	we	naturally	want	to	add	more	layers	to	the	map.	But	when	we	have	more	than
one	layer	in	the	OpenLayers	map,	we	also	may	want	to	include	some	component	to	handle	the	individual	visibility	and	the	order	of
layers	in	the	map.	As	OpenLayers	does	not	provide	a	control	to	influence	these	properties,	we	have	to	create	our	own	component.

GeoExt	wants	to	help	here	by	providing	the	necessary	parts	to	create	a	Tree	of	the	layers	in	the	map-component.

Let's	try	to	add	a	layer	tree.

MoMo	workshop

262Layer	tree

Prepare	layout
The	previous	chapter	started	from	the	following	template,	which	we	now	want	to	recreate.

Exercises

Please	create	a	file		map.html		in	the		src/erxercises		directory	and	paste	the	following:

<!DOCTYPE	html>

<html>

				<head>

								<meta	charset="utf-8">

								<title>Exercise	|	GeoExt	Workshop</title>

								<link	rel="stylesheet"	href="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/classic/theme-triton/resources/theme-triton-all.css"

								<script	src="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/ext-all.js"	type="text/javascript"></script>

								<link	rel="stylesheet"	href="./lib/ol/ol.css"	type="text/css">

								<script	src="./lib/ol/ol.js"	type="text/javascript"></script>

								<script	src="https://geoext.github.io/geoext3/master/GeoExt.js"	type="text/javascript"></script>

				</head>

				<body>

								<script>

var	map;

Ext.onReady(function(){

				//	1)	OpenLayers

				//

				//	Create	an	instance	of	an	OpenLayers	map:

				map	=	new	ol.Map({

								layers:	[

												new	ol.layer.Tile({

																source:	new	ol.source.OSM()

												})

],

								view:	new	ol.View({

												center:	ol.proj.fromLonLat([106.92,	47.92]),

												zoom:	12

								})

				});

				//	2)	GeoExt

				//

				//	Create	an	instance	of	the	GeoExt	map	component	with	that	map:

				var	mapComponent	=	Ext.create('GeoExt.component.Map',	{

								map:	map

				});

				//	3)	Ext	JS

				//

				//	Create	a	viewport

				var	vp	=	Ext.create('Ext.container.Viewport',	{

								layout:	'fit',

								items:	mapComponent

				});

});

								</script>

				</body>

</html>

We	want	to	change	the	layout	of	the	viewport	as	follows:

MoMo	workshop

263Prepare	layout

var	vp	=	Ext.create('Ext.container.Viewport',	{

				layout:	'border',

				items:	[

								mapComponent

]

});

In	order	to	be	usable	in	a	border-layout,	one	child	component	needs	to	have	the		region	-property	set	to		center	:

var	mapComponent	=	Ext.create('GeoExt.component.Map',	{

				map:	map,

				region:	'center'

});

If	you	apply	the	above	changes,	your	application	should	render	again	in	the	browser,	but	since	we	only	have	one	component	in	the
border-layout,	you'll	not	notice	a	visual	difference.
Let's	first	add	a	placeholder	panel	where	we	want	to	add	the	layer	tree:

var	layerTreePanel	=	Ext.create('Ext.panel.Panel',	{

				title:	'Layers	of	the	application',

				width:	300,

				region:	'west'

});

//	…	this	panel	also	needs	to	be	added	to	the	viewport

var	vp	=	Ext.create('Ext.container.Viewport',	{

				layout:	'border',

				items:	[

								mapComponent,

								layerTreePanel

]

});

Your	application	should	now	look	like	the	following:

Our	placeholder	panel	in	the	viewport

MoMo	workshop

264Prepare	layout

MoMo	workshop

265Prepare	layout

Create	a	TreePanel
We	now	have	the	layout	prepared	and	simply	need	to	switch	the	contents	of	the	west-panel.

Since	we	want	to	use	a	tree	to	eventually	control	the	layers	of	the	map,	we'll	use	an		Ext.tree.Panel		instead	of	the	simple	panel.

Exercises

Next,	we'll	switch	out	the		Ext.panel.Panel		against	a	dedicated		Ext.tree.Panel	.	If	we	look	at	the	documentation	for	the	tree-
panel,	you'll	see	a	very	basic	example,	which	you	please	add	to	the	viewport	instead	of	our	placeholder.
The	example	from	the	above	page	looks	like	this:

var	store	=	Ext.create('Ext.data.TreeStore',	{

				root:	{

								expanded:	true,

								children:	[

												{	text:	'detention',	leaf:	true	},

												{	text:	'homework',	expanded:	true,	children:	[

																{	text:	'book	report',	leaf:	true	},

																{	text:	'algebra',	leaf:	true}

]	},

												{	text:	'buy	lottery	tickets',	leaf:	true	}

]

				}

});

Ext.create('Ext.tree.Panel',	{

				title:	'Simple	Tree',

				width:	200,

				height:	150,

				store:	store,

				rootVisible:	false,

				renderTo:	Ext.getBody()

});

Try	to	understand	what	each	line	of	the	above	code	does	and	see	which	lines	you	need	to	change	or	remove,	so	that	you	can	use	the
tree	in	our	layout.

Hints

Some	hints	(in	case	you	have	trouble	getting	it	to	work)
The	store	—	as	complicated	as	it	looks	at	first	—	can	be	left	as	is,	you	don't	need	to	change	something	here.
The	return	value	of	the		Ext.create('Ext.tree.Panel',	/**/)		call	is	currently	ignored.	You	should	try	to	save	it	in
a	variable	(probably	the	one	from	our	basic	setup		layerTreePanel).
The	height	of	the	tree-panel	is	unnecessary,	we	want	to	put	the	panel	in	the	west	region,	which	has	full	height	by	default.
Remove	the		height	-property.
The		renderTo	-configuration	of	the	tree-panel	is	also	fine	for	the	ExtJS	standalone	example,	but	bad	for	our	combination
setup.	In	our	case,	the	viewport	takes	care	of	where	to	actually	render	the	tree.	Remove	the		renderTo	-property.

The	final	result	should	look	like	this:

MoMo	workshop

266Create	a	TreePanel

The	copy	and	pasted	Ext-example	in	our	viewport

Solution

For	reference,	here	is	the	full	code	of	the	store,	tree	and	viewport	that	lead	to	the	above	picture:

var	store	=	Ext.create('Ext.data.TreeStore',	{

				root:	{

								expanded:	true,

								children:	[

												{	text:	'detention',	leaf:	true	},

												{	text:	'homework',	expanded:	true,	children:	[

																{	text:	'book	report',	leaf:	true	},

																{	text:	'algebra',	leaf:	true}

]	},

												{	text:	'buy	lottery	tickets',	leaf:	true	}

]

				}

});

var	layerTreePanel	=	Ext.create('Ext.panel.Panel',	{

				title:	'Layers	of	the	application',

				width:	300,

				region:	'west',

				store:	store,

				rootVisible:	false

});

var	vp	=	Ext.create('Ext.container.Viewport',	{

				layout:	'border',

				items:	[

								mapComponent,

								layerTreePanel

]

});

MoMo	workshop

267Create	a	TreePanel

MoMo	workshop

268Create	a	TreePanel

Assign	LayersTree	store
Instead	of	the	hard-coded	hierarchical	list	of	things	in	the	tree,	we	now	want	to	link	the	tree	with	our	map.

In	order	to	do	this,	we	need	to	change	the	store	that	is	used	for	the	tree.	Instead	of	the	all-purpose		Ext.data.TreeStore	,	we'll	use	the
special	GeoExt	class		GeoExt.data.store.LayersTree	

Exercises

If	you	haven't	done	already,	set	up	a	file	called		map.html		in	the		src/exercises		directory	and	paste	the	following	contents:

<!DOCTYPE	html>

<html>

				<head>

								<meta	charset="utf-8">

								<title>Exercise	|	GeoExt	Workshop</title>

								<link	rel="stylesheet"	href="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/classic/theme-triton/resources/theme-triton-all.css"

								<script	src="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/ext-all.js"	type="text/javascript"></script>

								<link	rel="stylesheet"	href="./lib/ol/ol.css"	type="text/css">

								<script	src="./lib/ol/ol.js"	type="text/javascript"></script>

								<script	src="https://geoext.github.io/geoext3/master/GeoExt.js"	type="text/javascript"></script>

				</head>

				<body>

								<script>

var	map;

Ext.onReady(function(){

				//	1)	OpenLayers

				//

				//	Create	an	instance	of	an	OpenLayers	map:

				map	=	new	ol.Map({

								layers:	[

												new	ol.layer.Tile({

																source:	new	ol.source.OSM()

												})

],

								view:	new	ol.View({

												center:	ol.proj.fromLonLat([106.92,	47.92]),

												zoom:	12

								})

				});

				//	2)	GeoExt

				//

				//	Create	an	instance	of	the	GeoExt	map	component	with	that	map:

				var	mapComponent	=	Ext.create('GeoExt.component.Map',	{

								map:	map,

								region:	'center'

				});

				var	store	=	Ext.create('Ext.data.TreeStore',	{

								root:	{

												expanded:	true,

												children:	[

																{	text:	'detention',	leaf:	true	},

																{	text:	'homework',	expanded:	true,	children:	[

																				{	text:	'book	report',	leaf:	true	},

																				{	text:	'algebra',	leaf:	true}

]	},

																{	text:	'buy	lottery	tickets',	leaf:	true	}

]

								}

				});

				var	layerTreePanel	=	Ext.create('Ext.tree.Panel',	{

								title:	'Layers	of	the	application',

MoMo	workshop

269Assign	LayersTree	store

								width:	300,

								region:	'west',

								store:	store,

								rootVisible:	false

				});

				//	3)	Ext	JS

				//

				//	Create	a	viewport

				var	vp	=	Ext.create('Ext.container.Viewport',	{

								layout:	'border',

								items:	[

												mapComponent,

												layerTreePanel

]

				});

});

								</script>

				</body>

</html>

Make	yourself	familiar	with	the		GeoExt.data.store.LayersTree		class	by	studying	the	following	API-docs:
http://geoext.github.io/geoext3/master/docs/#!/api/GeoExt.data.store.LayersTree
Create	an	instance	of	the		GeoExt.data.store.LayersTree		class	and	pass	it	the	following	configuration	object:

{

				layerGroup:	/*	the	top	level	layer	group	of	the	map	*/

}

Study	the	API	docs	of		ol.Map		to	get	the	appropriate		LayerGroup	:	http://openlayers.org/en/v3.13.1/apidoc/ol.Map.html
If	everything	works	fine,	you	should	see	a	tree	with	one	(currently	unlabeled)	leaf.	Next	to	the	leaf	you	find	a	checkbox,	that
reflects	the	overall	visibility	of	the	layer.

The	working	but	currently	unlabeled	tree

Study	the		GeoExt.data.store.LayersTree		and	find	out	why	there	is	no	label	next	to	the	tree-element.
Add	more	layers	to	the	map	and	see	if	they	all	appear	in	the	map	and	in	the	tree.	Take	e.g.	the	following	WMS:

MoMo	workshop

270Assign	LayersTree	store

http://geoext.github.io/geoext3/master/docs/#!/api/GeoExt.data.store.LayersTree
http://openlayers.org/en/v3.13.1/apidoc/ol.Map.html

url:	http://ows.terrestris.de/osm/service

layers:	OSM-WMS

Read	the	documentation	for	the	Ext	class		Ext.tree.plugin.TreeViewDragDrop	.	What	happens	if	you	add	this	plugin	to	the	tree?
Your	application	should	now	e.g.	look	like	this:

The	tree	in	the	application

Solution

For	reference,	here	are	code-snippets	for	the	relevant	parts	of	the	code:

MoMo	workshop

271Assign	LayersTree	store

http://docs.sencha.com/extjs/6.0/6.0.0-classic/#!/api/Ext.tree.plugin.TreeViewDragDrop

//	layers	should	have	a	property	for	their	name	(configurable)

new	ol.layer.Tile({

				source:	new	ol.source.OSM(),

				name:	'OpenStreetMap'

});

//	Creating	an	appropriate	treestore

var	treeStore	=	Ext.create('GeoExt.data.store.LayersTree',	{

				layerGroup:	map.getLayerGroup()

});

//	Use	the	store	in	the	tree	and	also	load	plugin

var	layerTreePanel	=	Ext.create('Ext.tree.Panel',	{

				title:	'Layers	of	the	application',

				width:	300,

				region:	'west',

				store:	treeStore,

				rootVisible:	false,

				viewConfig:	{

								plugins:	{	ptype:	'treeviewdragdrop'	}

				}

});

MoMo	workshop

272Assign	LayersTree	store

Summary
This	chapter	taught	you	how	to	make	use	of	the	class		GeoExt.data.store.LayersTree		to	create	a	tree	showing	the	layers	of	the
application.

The	tree-panel	correctly	reorders	the	layer	order	in	the	map	if	the	order	changes	(via	drag	and	drop)	in	the	tree.	All	tree-leafs	have	a
checkbox	to	control	the	visibility	of	the	connected	layer.

MoMo	workshop

273Summary

Feature	grid
In	this	chapter	we	want	to	add	a	grid	component	to	the	application,	which	shows	a	row	for	every	feature	of	a	vector	layer.	We	also	want
to	add	basic	interaction	between	the	grid	of	features	and	the	map.

We	will	start	in	the	usual	way	by	setting	up	an	ExtJS	placeholder	component	which	we	will	then	gradually	be	enhanced	or	replaced.

Head	over	to	the	prepare	layout	chapter,	in	which	we'll	add	another	visual	component	to	our	application.

MoMo	workshop

274Feature	grid

Prepare	layout
We	want	to	add	a	grid	panel	to	our	basic	map	application	now.

Exercises

Prepare	the		map.html		file	to	contain	the	following	code.	This	is	basically	the	result	of	the	previous	chapters:

<!DOCTYPE	html>

<html>

				<head>

								<meta	charset="utf-8">

								<title>Exercise	|	GeoExt	Workshop</title>

								<link	rel="stylesheet"	href="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/classic/theme-triton/resources/theme-triton-all.css"

								<script	src="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/ext-all.js"	type="text/javascript"></script>

								<link	rel="stylesheet"	href="./lib/ol/ol.css"	type="text/css">

								<script	src="./lib/ol/ol.js"	type="text/javascript"></script>

								<script	src="https://geoext.github.io/geoext3/master/GeoExt.js"	type="text/javascript"></script>

				</head>

				<body>

								<script>

var	map;

Ext.onReady(function(){

				//	1)	OpenLayers

				//

				//	Create	an	instance	of	an	OpenLayers	map:

				map	=	new	ol.Map({

								layers:	[

												new	ol.layer.Tile({

																source:	new	ol.source.OSM(),

																name:	'OpenStreetMap'

												}),

												new	ol.layer.Tile({

																source:	new	ol.source.TileWMS({

																				url:	'http://ows.terrestris.de/osm/service',

																				params:	{

																								layers:	'OSM-WMS'

																				}

																}),

																name:	'OSM	WMS	(terrestris)'

												})

],

								view:	new	ol.View({

												center:	ol.proj.fromLonLat([106.92,	47.92]),

												zoom:	12

								})

				});

				//	2)	GeoExt

				//

				//	Create	an	instance	of	the	GeoExt	map	component	with	that	map:

				var	mapComponent	=	Ext.create('GeoExt.component.Map',	{

								map:	map,

								region:	'center'

				});

				var	treeStore	=	Ext.create('GeoExt.data.store.LayersTree',	{

								layerGroup:	map.getLayerGroup()

				});

				var	layerTreePanel	=	Ext.create('Ext.tree.Panel',	{

								title:	'Layers	of	the	application',

								width:	300,

								region:	'west',

								store:	treeStore,

MoMo	workshop

275Prepare	layout

								rootVisible:	false,

								viewConfig:	{

												plugins:	{	ptype:	'treeviewdragdrop'	}

								}

				});

				//	3)	Ext	JS

				//

				//	Create	a	viewport

				var	vp	=	Ext.create('Ext.container.Viewport',	{

								layout:	'border',

								items:	[

												mapComponent,

												layerTreePanel

]

				});

});

								</script>

				</body>

</html>

If	you	open	this	file	in	a	browser	(/map.html),	the	application	should	look	like	in	the	following	image:

Our	starting	point

We	want	to	have	a	grid	in	the	south,	so	let's	start	with	the	basic	example	from	the	ExtJS	Grid	documentation:

MoMo	workshop

276Prepare	layout

http://docs.sencha.com/extjs/6.0/6.0.0-classic/#!/api/Ext.grid.Panel

Ext.create('Ext.data.Store',	{

				storeId:	'simpsonsStore',

				fields:['name',	'email',	'phone'],

				data:	[

								{	name:	'Lisa',	email:	'lisa@simpsons.com',	phone:	'555-111-1224'	},

								{	name:	'Bart',	email:	'bart@simpsons.com',	phone:	'555-222-1234'	},

								{	name:	'Homer',	email:	'homer@simpsons.com',	phone:	'555-222-1244'	},

								{	name:	'Marge',	email:	'marge@simpsons.com',	phone:	'555-222-1254'	}

]

});

Ext.create('Ext.grid.Panel',	{

				title:	'Simpsons',

				store:	Ext.data.StoreManager.lookup('simpsonsStore'),

				columns:	[

								{	text:	'Name',	dataIndex:	'name'	},

								{	text:	'Email',	dataIndex:	'email',	flex:	1	},

								{	text:	'Phone',	dataIndex:	'phone'	}

],

				height:	200,

				width:	400,

				renderTo:	Ext.getBody()

});

Instead	of	using	a		storeId		and	then	later		Ext.data.StoreManager.lookup('simpsonsStore')	,	we	will	simply	use	a	variable	to
be	able	to	reference	the	store.	Since	we	will	put	the	panel	in	our	border	layout,	we	do	not	need	the		renderTo		and		width	
properties.	Don't	forget	to	assign	the		region:	south	.	We'll	also	save	the	panel	in	a	variable.	Your	code	should	look	roughly	like
the	following:

Hint

var	featureStore	=	Ext.create('Ext.data.Store',	{

				fields:['name',	'email',	'phone'],

				data:	[

								{	name:	'Lisa',	email:	'lisa@simpsons.com',	phone:	'555-111-1224'	},

								{	name:	'Bart',	email:	'bart@simpsons.com',	phone:	'555-222-1234'	},

								{	name:	'Homer',	email:	'homer@simpsons.com',	phone:	'555-222-1244'	},

								{	name:	'Marge',	email:	'marge@simpsons.com',	phone:	'555-222-1254'	}

]

});

var	featurePanel	=	Ext.create('Ext.grid.Panel',	{

				title:	'Simpsons',

				store:	featureStore,

				columns:	[

								{	text:	'Name',	dataIndex:	'name'	},

								{	text:	'Email',	dataIndex:	'email',	flex:	1	},

								{	text:	'Phone',	dataIndex:	'phone'	}

],

				height:	200,

				region:	'south'

});

Once	we	have	added	the		featurePanel		to	the	viewport,	our	application	should	look	like	in	the	following	image:

MoMo	workshop

277Prepare	layout

The	prepared	ExtJS	layout

Of	course	we	also	want	to	have	a	vector	layer	in	the	map,	whose	features	we	want	in	the	grid	later.
Please	create	a	new		ol.layer.Vector	,	that	has	a		ol.source.GeoJSON		configured	and	loads	the	local	data	in
	src/exercises/data/aimag-centers.json	.	Please	style	the	points	with	red	circles.	Please	also	zoom	the	map	a	little	bit	further
out;	zoom	level		4		should	be	fine.

Hint

var	redStyle	=	new	ol.style.Style({

				image:	circle	=	new	ol.style.Circle({

								fill:	new	ol.style.Fill({

												color:	'rgba(220,	0,	0,	0.5)'

								}),

								stroke:	new	ol.style.Stroke({

												color:	'rgba(220,	0,	0,	0.8)',

												width:	3

								}),

								radius:	8

				})

})

var	vectorLayer	=	new	ol.layer.Vector({

				source:	new	ol.source.Vector({

								url:	'data/aimag-centers.json',

								format:	new	ol.format.GeoJSON()

				}),

				name:	'Aimag',

				style:	redStyle

});

Our	application	should	now	look	like	in	the	following	image:

MoMo	workshop

278Prepare	layout

Our	map	now	also	shows	the	'Aimag'

MoMo	workshop

279Prepare	layout

Create	a	feature	grid
Now	it's	time	to	change	the	grid	to	no	longer	show	static	data	from	The	Simpsons,	but	instead	one	row	for	every	feature	of	the	vector
layer.

Exercises

Please	set	up		src/map.html		to	contain	the	following	lines:

<!DOCTYPE	html>

<html>

				<head>

								<meta	charset="utf-8">

								<title>Exercise	|	GeoExt	Workshop</title>

								<link	rel="stylesheet"	href="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/classic/theme-triton/resources/theme-triton-all.css"

								<script	src="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/ext-all.js"	type="text/javascript"></script>

								<link	rel="stylesheet"	href="./lib/ol/ol.css"	type="text/css">

								<script	src="./lib/ol/ol.js"	type="text/javascript"></script>

								<script	src="https://geoext.github.io/geoext3/master/GeoExt.js"	type="text/javascript"></script>

				</head>

				<body>

								<script>

var	map;

Ext.onReady(function(){

				var	redStyle	=	new	ol.style.Style({

								image:	circle	=	new	ol.style.Circle({

												fill:	new	ol.style.Fill({

																color:	'rgba(220,	0,	0,	0.5)'

												}),

												stroke:	new	ol.style.Stroke({

																color:	'rgba(220,	0,	0,	0.8)',

																width:	3

												}),

												radius:	8

								})

				})

				var	vectorLayer	=	new	ol.layer.Vector({

								source:	new	ol.source.Vector({

												url:	'data/aimag-centers.json',

												format:	new	ol.format.GeoJSON()

								}),

								name:	'Aimag',

								style:	redStyle

				});

				//	1)	OpenLayers

				//

				//	Create	an	instance	of	an	OpenLayers	map:

				map	=	new	ol.Map({

								layers:	[

												new	ol.layer.Tile({

																source:	new	ol.source.OSM(),

																name:	'OpenStreetMap'

												}),

												new	ol.layer.Tile({

																source:	new	ol.source.TileWMS({

																				url:	'http://ows.terrestris.de/osm/service',

																				params:	{

																								layers:	'OSM-WMS'

																				}

																}),

																name:	'OSM	WMS	(terrestris)'

												}),

												vectorLayer

],

								view:	new	ol.View({

MoMo	workshop

280Create	a	feature	grid

https://en.wikipedia.org/wiki/The_Simpsons

												center:	ol.proj.fromLonLat([106.92,	47.92]),

												zoom:	4

								})

				});

				//	2)	GeoExt

				//

				//	Create	an	instance	of	the	GeoExt	map	component	with	that	map:

				var	mapComponent	=	Ext.create('GeoExt.component.Map',	{

								map:	map,

								region:	'center'

				});

				var	treeStore	=	Ext.create('GeoExt.data.store.LayersTree',	{

								layerGroup:	map.getLayerGroup()

				});

				var	layerTreePanel	=	Ext.create('Ext.tree.Panel',	{

								title:	'Layers	of	the	application',

								width:	300,

								region:	'west',

								store:	treeStore,

								rootVisible:	false,

								viewConfig:	{

												plugins:	{	ptype:	'treeviewdragdrop'	}

								}

				});

				var	featureStore	=	Ext.create('Ext.data.Store',	{

								fields:['name',	'email',	'phone'],

								data:	[

												{	name:	'Lisa',	email:	'lisa@simpsons.com',	phone:	'555-111-1224'	},

												{	name:	'Bart',	email:	'bart@simpsons.com',	phone:	'555-222-1234'	},

												{	name:	'Homer',	email:	'homer@simpsons.com',	phone:	'555-222-1244'	},

												{	name:	'Marge',	email:	'marge@simpsons.com',	phone:	'555-222-1254'	}

]

				});

				var	featurePanel	=	Ext.create('Ext.grid.Panel',	{

								title:	'Simpsons',

								store:	featureStore,

								columns:	[

												{	text:	'Name',	dataIndex:	'name'	},

												{	text:	'Email',	dataIndex:	'email',	flex:	1	},

												{	text:	'Phone',	dataIndex:	'phone'	}

],

								height:	200,

								region:	'south'

				});

				//	3)	Ext	JS

				//

				//	Create	a	viewport

				var	vp	=	Ext.create('Ext.container.Viewport',	{

								layout:	'border',

								items:	[

												mapComponent,

												layerTreePanel,

												featurePanel

]

				});

});

								</script>

				</body>

</html>

Instead	of	a	generic		Ext.data.Store	,	use	a		GeoExt.data.store.Features	.	Look	up	the	API	documentation	on
http://geoext.github.io/geoext3/master/docs	for	further	details.
Make	sure	you	reference	your	vector	layer	and	the	map	to	work	on	when	configuring	the	store.

MoMo	workshop

281Create	a	feature	grid

http://geoext.github.io/geoext3/master/docs

Hint

var	featureStore	=	Ext.create('GeoExt.data.store.Features',	{

				layer:	vectorLayer,

				map:	map

});

Next	we	need	to	configure	the		columns		of	the		Ext.grid.Panel	.	Look	up	the	attributes	of	the	GeoJSON	and	change	the
appropriate	configuration	in	the	config	object	for	the		Ext.grid.Panel	.

Hint

//	E.g.

columns:	[

				{text:	'Name',	dataIndex:	'NAME',	flex:	3},

				{text:	'Population',	dataIndex:	'POP',	flex:	1},

				{text:	'Id',	dataIndex:	'AIMAG_ID',	flex:	1}

]

Additionally	we	can	use	the		GeoExt.grid.column.Symbolizer		class	of	GeoExt	to	include	the	styling	of	the	feature	in	the	grid.
Add	the	following	line	to	your	columns	definition:

{xtype:	'gx_symbolizercolumn',	width:	30}

When	a	row	is	selected	in	the	grid,	it	is	visually	highlighted.	Wouldn't	it	be	nice	if	the	feature	on	the	map	would	also	have	a
different	style	once	its	associated	row	is	selected?
Assign	a		selectionchange		listener	on	the	grid	and	ensure	that	the	correct	feature	is	highlighted	in	the	map.	Hint:	Create	a	new
style	and	in	the	callback	reset	the	style	for	every	feature	and	reassign	the	new	style	to	the	to	the	currently	selected	feature.	Use
	console.log(arguments)		to	see	what	you	have	been	passed	and	how	you	can	get	the	feature	from	the	passed	arguments.
Bonus:	Once	the	feature	has	a	different	style	on	the	map,	it	would	be	nice	if	we	could	see	that	style	in	the	grid,	right?	Change	the
	selectionchange		listener	to	also	update	the	grid	once	the	style	of	the	feature	has	changed.

Hint

MoMo	workshop

282Create	a	feature	grid

var	featureGrid	=	Ext.create('Ext.grid.Panel',	{

				store:	featureStore,

				region:	'south',

				title:	'Centers	of	Mongolian	Aimag',

				columns:	[

								{xtype:	'gx_symbolizercolumn',	width:	30},

								{text:	'Name',	dataIndex:	'NAME',	flex:	3},

								{text:	'Population',	dataIndex:	'POP',	flex:	1},

								{text:	'AIMAG_ID',	dataIndex:	'AIMAG_ID',	flex:	1}

],

				listeners:	{

								selectionchange:	function(sm,	selected)	{

												//	reset	all	selections

												featureStore.each(function(rec)	{

																rec.getFeature().setStyle(null);

												});

												//	highlight	grid	selection	in	map

												Ext.each(selected,	function(rec)	{

																rec.getFeature().setStyle(blueStyle);

												});

												//	update	the	grid	rendering	of	the	geometry

												sm.view.refresh();

								}

				},

				height:	300

});

Your	application	should	now	roughly	look	like	depicted	below:

The	application	with	a	feature	grid

MoMo	workshop

283Create	a	feature	grid

Summary
This	chapter	has	taught	you	a	lot:

We	learned	how	to	create	and	use	the		GeoExt.data.store.Features		class	and	configure	it	with	a	layer	and	a	map.
We	learned	that	such	stores	can	be	an	in	place	replacement	for		Ext.data.Store	,	e.g.	to	display	the	contained	data	in	a	grid.
We	learned	about		GeoExt.grid.column.Symbolizer		that	can	be	used	to	render	feature	symbolizers	in	grids.
We	also	have	seen	how	convenient	it	is	to	use	event	listeners	to	update	the	visual	representation	of	your	map	(the
	selectionchange		listener).

The	next	and	final	chapter	will	briefly	introduce	you	to	some	other	GeoExt	components.

MoMo	workshop

284Summary

Popups,	Overview	&	more
GeoExt	has	some	more	components	and	classes	that	we	didn't	touch	so	far.	This	chapter	wants	to	show	some	other	aspects	of	GeoExt.
However,	we	cannot	go	through	every	class	in	detail	and	will	only	barely	touch	all	the	possibilities	that	GeoExt	provides.

We	will	enhance	our	current	application	with	two	concrete	usages	of	GeoExt	functionality:	an	embedded	overview-map	and	popups	for
hovered	locations.

Furthermore	we	want	to	give	a	short	theoretical	outlook	for	possible	enhancements	of	your	applications.	You	can	then	explore	these	on
your	own.

Let's	start	with	adding	popups	for	hovered	coordinates,	shall	we?

MoMo	workshop

285Popups,	Overview	map	&	other	components

Popups
In	this	chapter	we	want	to	add	short	informative	popups	on	the	map.	We	will	open	the	popup	when	the	mouse	lasts	for	a	certain	amount
of	time	at	a	specific	location.	Inside	the	popup	we	show	the	formatted	coordinates	of	the	hover-location.	To	do	this	we	will	make	use	of
a	GeoExt	event	on	the		GeoExt.component.Map		and	of	the	class		GeoExt.component.Popup	.

Exercises

Prepare	the		map.html		file	to	contain	the	following	code.	This	is	basically	the	result	of	the	previous	chapters:

<!DOCTYPE	html>

<html>

				<head>

								<meta	charset="utf-8">

								<title>Exercise	|	GeoExt	Workshop</title>

								<link	rel="stylesheet"	href="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/classic/theme-triton/resources/theme-triton-all.css"

								<script	src="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/ext-all.js"	type="text/javascript"></script>

								<link	rel="stylesheet"	href="./lib/ol/ol.css"	type="text/css">

								<script	src="./lib/ol/ol.js"	type="text/javascript"></script>

								<script	src="https://geoext.github.io/geoext3/master/GeoExt.js"	type="text/javascript"></script>

				</head>

				<body>

								<script>

var	map;

Ext.onReady(function(){

				var	redStyle	=	new	ol.style.Style({

								image:	circle	=	new	ol.style.Circle({

												fill:	new	ol.style.Fill({

																color:	'rgba(220,	0,	0,	0.5)'

												}),

												stroke:	new	ol.style.Stroke({

																color:	'rgba(220,	0,	0,	0.8)',

																width:	3

												}),

												radius:	8

								})

				});

				var	blueStyle	=	new	ol.style.Style({

								image:	circle	=	new	ol.style.Circle({

												fill:	new	ol.style.Fill({

																color:	'rgba(0,	0,	220,	0.5)'

												}),

												stroke:	new	ol.style.Stroke({

																color:	'rgba(0,	0,	220,	0.8)',

																width:	3

												}),

												radius:	8

								})

				})

				var	vectorLayer	=	new	ol.layer.Vector({

								source:	new	ol.source.Vector({

												url:	'data/aimag-centers.json',

												format:	new	ol.format.GeoJSON()

								}),

								name:	'Aimag',

								style:	redStyle

				});

				//	1)	OpenLayers

				//

				//	Create	an	instance	of	an	OpenLayers	map:

				map	=	new	ol.Map({

MoMo	workshop

286Popup

								layers:	[

												new	ol.layer.Tile({

																source:	new	ol.source.OSM(),

																name:	'OpenStreetMap'

												}),

												new	ol.layer.Tile({

																source:	new	ol.source.TileWMS({

																				url:	'http://ows.terrestris.de/osm/service',

																				params:	{

																								layers:	'OSM-WMS'

																				}

																}),

																name:	'OSM	WMS	(terrestris)'

												}),

												vectorLayer

],

								view:	new	ol.View({

												center:	ol.proj.fromLonLat([106.92,	47.92]),

												zoom:	4

								})

				});

				//	2)	GeoExt

				//

				//	Create	an	instance	of	the	GeoExt	map	component	with	that	map:

				var	mapComponent	=	Ext.create('GeoExt.component.Map',	{

								map:	map,

								region:	'center'

				});

				var	treeStore	=	Ext.create('GeoExt.data.store.LayersTree',	{

								layerGroup:	map.getLayerGroup()

				});

				var	layerTreePanel	=	Ext.create('Ext.tree.Panel',	{

								title:	'Layers	of	the	application',

								width:	300,

								region:	'west',

								store:	treeStore,

								rootVisible:	false,

								viewConfig:	{

												plugins:	{	ptype:	'treeviewdragdrop'	}

								}

				});

				var	featureStore	=	Ext.create('GeoExt.data.store.Features',	{

								layer:	vectorLayer,

								map:	map

				});

				var	featureGrid	=	Ext.create('Ext.grid.Panel',	{

								store:	featureStore,

								region:	'south',

								title:	'Centers	of	Mongolian	Aimag',

								columns:	[

												{xtype:	'gx_symbolizercolumn',	width:	30},

												{text:	'Name',	dataIndex:	'NAME',	flex:	3},

												{text:	'Population',	dataIndex:	'POP',	flex:	1},

												{text:	'AIMAG_ID',	dataIndex:	'AIMAG_ID',	flex:	1}

],

								listeners:	{

												selectionchange:	function(sm,	selected)	{

																//	reset	all	selections

																featureStore.each(function(rec)	{

																				rec.getFeature().setStyle(null);

																});

																//	highlight	grid	selection	in	map

																Ext.each(selected,	function(rec)	{

																				rec.getFeature().setStyle(blueStyle);

																});

																//	update	the	grid	rendering	of	the	geometry

																sm.view.refresh();

												}

MoMo	workshop

287Popup

								},

								height:	300

				});

				//	3)	Ext	JS

				//

				//	Create	a	viewport

				var	vp	=	Ext.create('Ext.container.Viewport',	{

								layout:	'border',

								items:	[

												mapComponent,

												layerTreePanel,

												featureGrid

]

				});

});

								</script>

				</body>

</html>

If	you	open	this	file	in	a	browser	(/map.html),	the	application	should	look	like	in	the	following	image:

Our	starting	point

For	popups	to	look	right,	we	need	some	CSS.	Include	the	following	in	the		<head>		of	the	page:

MoMo	workshop

288Popup

<link	rel="stylesheet"	href="http://geoext.github.io/geoext3/master/resources/css/gx-popup.css"	type="text/css">

<style>

.gx-popup	p	{

				padding:	5px	5px	0	5px;

				border-radius:	7px;

				background-color:	rgba(255,255,255,0.85);

				border:	3px	solid	white;

				margin:	0;

				text-align:	center;

}

</style>

Configure	the	existing		GeoExt.component.Map		with		pointerRest:	true	.	Only	if	this	configuration	is		true	,	the	map-
component	will	emit	the		pointerrest		&		pointerrestout		events.
Read	the	documentation	for		pointerrest		&		pointerrestout	
Register	an	event-listener	on		pointerrest		that	logs	the	hovered	coordinate.	Use	the	OpenLayers	utility	methods
	ol.coordinate.toStringHDMS		and		ol.proj.transform		on	the		evt.coordinate		to	format	the	coordinate.

Hint

var	mapComponent	=	Ext.create('GeoExt.component.Map',	{

				map:	map,

				region:	'center',

				pointerRest:	true

});

mapComponent.on('pointerrest',	function(evt)	{

				var	coordinate	=	evt.coordinate;

				var	lonlat	=	ol.proj.transform(coordinate,	'EPSG:3857',	'EPSG:4326')

				var	hdms	=	ol.coordinate.toStringHDMS(lonlat);

				console.log(hdms);

});

Once	you	have	the	above	logging	of	the	coordinate	in	place,	we	can	now	create	a	popup.
Instantiate	the	class		GeoExt.component.Popup		and	configure	it	with	your	map.	You	should	also	provide	a		width	.	Store	the
popup	in	an	accessible	variable;		var	popup		is	a	good	choice.
Inside	of	the	configured	callback	on		pointerrest		we	now	want	to	update	the	HTML	of	the	popup	(method		setHtml)	and
reposition	it	at	the	coordinate	(method		position	,	pass	the	coordinates	in	the	view	projection).	Finally,		show		the	popup.

Hint

mapComponent.on('pointerrest',	function(evt)	{

				var	coordinate	=	evt.coordinate;

				var	lonlat	=	ol.proj.transform(coordinate,	'EPSG:3857',	'EPSG:4326')

				var	hdms	=	ol.coordinate.toStringHDMS(lonlat);

				popup.setHtml('<p>'	+	hdms	+	'</p>');

				popup.position(coordinate);

				popup.show();

});

You	may	notice	that	the	popup	stays	in	place	if	the	mouse	leaves	the	map	viewport,	which	is	undesired	in	most	of	the	cases.	Use
the	event		pointerrestout		to		hide		the	popup	whenever	the	mouse	leaves	the	map.

MoMo	workshop

289Popup

http://geoext.github.io/geoext3/master/docs/#!/api/GeoExt.component.Map-event-pointerrest
http://geoext.github.io/geoext3/master/docs/#!/api/GeoExt.component.Map-event-pointerrestout

Hint

mapComponent.on('pointerrestout',	popup.hide,	popup);

Congratulations,	you	can	now	happily	hover	anywhere	on	the	map	and	be	greeted	with	the	hovered	coordinate:

A	popup	for	a	hovered	location

MoMo	workshop

290Popup

Overview	map
Especially	when	zoomed	in,	it	can	be	hard	to	understand	the	extent	of	the	mappanel.	Overview-maps,	which	show	the	extent	of	the	main
map	on	a	smaller	scale	can	be	very	useful	then.	GeoExt	comes	with	a	useful	component	to	create	overviews:
	GeoExt.component.OverviewMap	.

Exercises

We'll	start	again	with	the	code	of		map.html		from	the	previous	sections.	It's	already	some	lines	long:

<!DOCTYPE	html>

<html>

				<head>

								<meta	charset="utf-8">

								<title>Exercise	|	GeoExt	Workshop</title>

								<link	rel="stylesheet"	href="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/classic/theme-triton/resources/theme-triton-all.css"

								<script	src="https://cdnjs.cloudflare.com/ajax/libs/extjs/6.0.0/ext-all.js"	type="text/javascript"></script>

								<link	rel="stylesheet"	href="./lib/ol/ol.css"	type="text/css">

								<link	rel="stylesheet"	href="http://geoext.github.io/geoext3/master/resources/css/gx-popup.css"	type="text/css">

								<script	src="./lib/ol/ol.js"	type="text/javascript"></script>

								<script	src="https://geoext.github.io/geoext3/master/GeoExt.js"	type="text/javascript"></script>

								<style>

.gx-popup	p	{

				padding:	5px	5px	0	5px;

				border-radius:	7px;

				background-color:	rgba(255,255,255,0.85);

				border:	3px	solid	white;

				margin:	0;

				text-align:	center;

}

								</style>

				</head>

				<body>

								<script>

var	map;

Ext.onReady(function(){

				var	redStyle	=	new	ol.style.Style({

								image:	circle	=	new	ol.style.Circle({

												fill:	new	ol.style.Fill({

																color:	'rgba(220,	0,	0,	0.5)'

												}),

												stroke:	new	ol.style.Stroke({

																color:	'rgba(220,	0,	0,	0.8)',

																width:	3

												}),

												radius:	8

								})

				});

				var	blueStyle	=	new	ol.style.Style({

								image:	circle	=	new	ol.style.Circle({

												fill:	new	ol.style.Fill({

																color:	'rgba(0,	0,	220,	0.5)'

												}),

												stroke:	new	ol.style.Stroke({

																color:	'rgba(0,	0,	220,	0.8)',

																width:	3

												}),

												radius:	8

								})

				})

				var	vectorLayer	=	new	ol.layer.Vector({

								source:	new	ol.source.Vector({

MoMo	workshop

291Overview	map

												url:	'data/aimag-centers.json',

												format:	new	ol.format.GeoJSON()

								}),

								name:	'Aimag',

								style:	redStyle

				});

				//	1)	OpenLayers

				//

				//	Create	an	instance	of	an	OpenLayers	map:

				map	=	new	ol.Map({

								layers:	[

												new	ol.layer.Tile({

																source:	new	ol.source.OSM(),

																name:	'OpenStreetMap'

												}),

												new	ol.layer.Tile({

																source:	new	ol.source.TileWMS({

																				url:	'http://ows.terrestris.de/osm/service',

																				params:	{

																								layers:	'OSM-WMS'

																				}

																}),

																name:	'OSM	WMS	(terrestris)'

												}),

												vectorLayer

],

								view:	new	ol.View({

												center:	ol.proj.fromLonLat([106.92,	47.92]),

												zoom:	4

								})

				});

				//	2)	GeoExt

				//

				//	Create	an	instance	of	the	GeoExt	map	component	with	that	map:

				var	mapComponent	=	Ext.create('GeoExt.component.Map',	{

								map:	map,

								region:	'center',

								pointerRest:	true,

								pointerRestInterval:	750,

								pointerRestPixelTolerance:	5

				});

				var	popup	=	Ext.create('GeoExt.component.Popup',	{

								map:	map,

								width:	200

				});

				//	Add	a	pointerrest	handler	to	the	map	component	to	render	the	popup.

				mapComponent.on('pointerrest',	function(evt)	{

								var	coordinate	=	evt.coordinate;

								var	lonlat	=	ol.proj.transform(coordinate,	'EPSG:3857',	'EPSG:4326')

								var	hdms	=	ol.coordinate.toStringHDMS(lonlat);

								popup.setHtml('<p>'	+	hdms	+	'</p>');

								popup.position(coordinate);

								popup.show();

				});

				//	hide	the	popup	once	it	isn't	on	the	map	any	longer

				mapComponent.on('pointerrestout',	popup.hide,	popup);

				var	treeStore	=	Ext.create('GeoExt.data.store.LayersTree',	{

								layerGroup:	map.getLayerGroup()

				});

				var	layerTreePanel	=	Ext.create('Ext.tree.Panel',	{

								title:	'Layers	of	the	application',

								width:	300,

								region:	'west',

								store:	treeStore,

								rootVisible:	false,

MoMo	workshop

292Overview	map

								viewConfig:	{

												plugins:	{	ptype:	'treeviewdragdrop'	}

								}

				});

				var	featureStore	=	Ext.create('GeoExt.data.store.Features',	{

								layer:	vectorLayer,

								map:	map

				});

				var	featureGrid	=	Ext.create('Ext.grid.Panel',	{

								store:	featureStore,

								region:	'south',

								title:	'Centers	of	Mongolian	Aimag',

								columns:	[

												{xtype:	'gx_symbolizercolumn',	width:	30},

												{text:	'Name',	dataIndex:	'NAME',	flex:	3},

												{text:	'Population',	dataIndex:	'POP',	flex:	1},

												{text:	'AIMAG_ID',	dataIndex:	'AIMAG_ID',	flex:	1}

],

								listeners:	{

												selectionchange:	function(sm,	selected)	{

																//	reset	all	selections

																featureStore.each(function(rec)	{

																				rec.getFeature().setStyle(null);

																});

																//	highlight	grid	selection	in	map

																Ext.each(selected,	function(rec)	{

																				rec.getFeature().setStyle(blueStyle);

																});

																//	update	the	grid	rendering	of	the	geometry

																sm.view.refresh();

												}

								},

								height:	300

				});

				//	3)	Ext	JS

				//

				//	Create	a	viewport

				var	vp	=	Ext.create('Ext.container.Viewport',	{

								layout:	'border',

								items:	[

												mapComponent,

												layerTreePanel,

												featureGrid

]

				});

});

								</script>

				</body>

</html>

If	you	open	this	file	in	a	browser	(/map.html),	the	application	should	look	like	in	the	following	image,	but	you	should	also	be	able
to	see	popups	when	hovering	over	a	map	location:

MoMo	workshop

293Overview	map

Our	starting	point

We	want	the	overview	map	to	live	in	the	top-left	corner	of	our	application,	right	above	the	layer	tree.	For	this	we	will	—	as	usual
—	first	prepare	the	layout	before	we	use	the	GeoExt	component.
Create	a	new	panel	that	we	will	eventually	replace	with	the	overview,	but	don't	add	it	anywhere	yet:

var	overviewPanel	=	Ext.create('Ext.panel.Panel',	{

				title:	'Overview',

				layout:	'fit',

				html:	'TODO',

				height:	300,

				width:	300

});

Instead	of	assigning	the		region:	'west'		to	the	layer	tree	panel,	we'll	create	a	new		container		with	the		vbox	-layout	and	pass
that	to	the		items		of	the		Ext.container.Viewport	:

var	vp	=	Ext.create('Ext.container.Viewport',	{

				layout:	'border',

				items:	[

								mapComponent,

								//	below	is	the	new	wrapping	container:

								{

												xtype:	'container',

												region:	'west',

												layout:	'vbox',

												collapsible:	true,

												items:	[

																overviewPanel,

																layerTreePanel

]

								},

								featureGrid

]

});

MoMo	workshop

294Overview	map

If	we	specify		flex:	1		for	the		layerTreePanel		(the		region	-property	is	no	longer	needed),	your	application	should	look	like
this:

The	prepared	layout

Now	it	is	time	to	use		GeoExt.component.OverviewMap	:	Create	an	instance	of	this	class	and	read	the	related	API-docs.
Configure	the		overviewPanel		with	the	created	overview	instead	of		html:	'TODO'		(via		items).
You	may	want	to	have	another	layer	in	the	overview.	How	about	this	WMS?

URL:	http://ows.terrestris.de/osm-gray/service

Layers:	OSM-WMS

Hint

MoMo	workshop

295Overview	map

http://geoext.github.io/geoext3/master/docs/#!/api/GeoExt.component.OverviewMap

var	overview	=	Ext.create('GeoExt.component.OverviewMap',	{

				parentMap:	map,

				layers:	[

								new	ol.layer.Tile({

												source:	new	ol.source.TileWMS({

																url:	'http://ows.terrestris.de/osm-gray/service',

																params:	{

																				layers:	'OSM-WMS'

																}

												}),

												opacity:	0.8

								})

]

});

var	overviewPanel	=	Ext.create('Ext.panel.Panel',	{

				title:	'Overview',

				layout:	'fit',

				items:	overview,

				height:	300,

				width:	300,

				collapsible:	true

});

If	everything	went	well,	you	should	see	an	application	like	below:

The	final	application

MoMo	workshop

296Overview	map

Other	&	summary
Congratulations!	You	created	quite	an	application	with	just	around	200	lines	of	JavaScript;	and	that	includes	plenty	of	comments	and
whitespace.

GeoExt	still	has	more	to	offer.

We	couldn't	talk	about	legends	in	the	tree,	the	super	useful		GeoExt.OlObject	-class	or	the		PrintProvider		which	allows	you	to
serialize	your	map	to	a	format	understandable	by	the	superb	Mapfish	Print	Servlet	(v3).

Make	sure	to	checkout	all	examples,	the	API	documentation	(also	available	with	ExtJS-classes)	and	the	code	on	github.

The	source	for	this	workshop	is	also	on	github.	If	you	find	an	error	or	outdated	section,	just	open	an	issue	or	—	even	better	—	provide
us	with	a	pull	request.

We	hope	you	like	what	you	have	learned.

MoMo	workshop

297Other

http://rawgit.com/geoext/geoext3/master/examples/tree/tree-legend-simple.html
http://rawgit.com/geoext/geoext3/master/examples/mapviewform/mapviewform.html
http://rawgit.com/geoext/geoext3/master/examples/print/basic-mapfish.html
http://mapfish.github.io/mapfish-print-doc/#/overview
http://geoext.github.io/geoext3/
http://geoext.github.io/geoext3/master/docs/
http://geoext.github.io/geoext3/master/docs-w-ext/
https://github.com/geoext/geoext3
https://github.com/geoext/geoext3-ws

Synopsis
Congratulations!	You've	successfully	finished	the	workshop	"Introduction	to	core	technologies	behind	the	MoMo	geoportal"	 !

MoMo	workshop

298Synopsis

	Introduction
	Overview
	Prerequisites
	References
	Setup
	Data

	GeoServer
	Basics
	Administration
	Publishing

	Advanced
	REST
	GeoWebCache

	JavaScript
	Basics
	Comments
	Variables
	Types
	Equality

	Numbers
	Creation
	Basic Operators
	Advanced Operators

	Strings
	Creation
	Concatenation
	Length

	Conditional Logic
	If
	Else
	Comparators
	Concatenate

	Arrays
	Indices
	Length

	Loops
	For
	While
	Do...While

	Functions
	Declare
	Higher order

	Objects
	Creation
	Properties
	Mutable
	Reference
	Prototype
	Delete
	Enumeration
	Global footprint

	OpenLayers
	Basics
	Creating a map
	Dissecting your map
	Resources

	Layers and Sources
	WMS sources
	Tiled sources
	Proprietary tile providers
	Vector data
	Image vector source

	Controls
	Scale line control
	Select interaction
	Draw interaction
	Modify interaction

	Vector Topics
	Formats
	Styling concepts
	Custom styles

	Custom Builds
	Concepts
	Create custom builds

	Ext JS
	Introduction
	Workshop Setup

	Basics
	Include Ext JS
	Hello Ext JS
	Viewport

	Layouts
	Column
	HBox
	VBox
	Accordion
	Table
	Border

	Components
	Panel
	Image
	Form
	Tree
	Grid

	Data
	Preparation
	Model
	Proxy and store

	Events
	Event click
	Event afterrender
	Event change

	GeoExt
	Metainformation
	About
	Target audience
	Goals
	Development environment
	Notes

	First steps
	Hello exercise
	Hello OpenLayers
	Hello ExtJS
	Hello GeoExt
	Useful resources
	Summary

	Map
	Basic example
	Dissecting the example
	Configuration variants
	Summary

	Layer tree
	Prepare layout
	Create a TreePanel
	Assign LayersTree store
	Summary

	Feature grid
	Prepare layout
	Create a feature grid
	Summary

	Popups, Overview map & other components
	Popup
	Overview map
	Other

	Synopsis

